19047

Теория нестационарных возмущений. Переходы под влиянием возмущений, зависящих от времени

Лекция

Физика

Лекция 29 Теория нестационарных возмущений. Переходы под влиянием возмущений зависящих от времени Согласно постулатам квантовой механики волновая функция любой квантовой системы удовлетворяет временному уравнению Шредингера 1 где гамильтониан системы...

Русский

2013-07-11

777 KB

10 чел.

Лекция 29

Теория нестационарных возмущений. Переходы под влиянием возмущений, зависящих от времени

Согласно постулатам квантовой механики волновая функция любой квантовой системы удовлетворяет временному уравнению Шредингера

    (1)

где  - гамильтониан системы. Если гамильтониан не зависит явно от времени, то общее решение временного уравнения Шредингера (1) имеет вид

   (2)

где  и  - собственные функции и собственные значения оператора Гамильтона системы, а постоянные  определяются начальной волновой функцией :

    (3)

Так как решение (2) представляет собой разложение волновой функции системы по собственным функциям оператора Гамильтона, то вероятность обнаружить при измерении энергии  квантовой системы, что  (то есть вероятность обнаружить квантовую систему в -ом собственном состоянии гамильтониана) равна

   (4)

Из (4) следует, что если гамильтониан квантовой системы не зависит от времени, то вероятность обнаружить систему в том или ином собственном состоянии гамильтониана не зависит от времени. В частности, если в начальный момент времени квантовая система находилась в -ом собственном состоянии гамильтониана (в сумме (2) – одно слагаемое), то она будет находится в нем в любой момент времени (то есть в сумме (2) так и останется одно слагаемое).. Действительно, в этом случае ,  и, как это следует из (4), ,  в любой момент времени.

Совершенно другое положение имеет место в случае, когда гамильтониан явно зависит от времени. Такие случаи реализуются, например, когда стационарные квантовые системы подвергаются воздействию внешних возмущений, зависящих от времени. В этом случае функция вида (2) уже не является решением  временного уравнения Шредингера (1) ни при каком выборе постоянных . Поэтому коэффициенты разложения волновой функции  по любой полной системе функций и, в частности, по собственным функциям гамильтониана системы в какой-то момент времени

    (5)

являются функциями времени, квадраты модуля которых зависят от времени. Следовательно, вероятность обнаружить квантовую систему в том или ином квантовом состоянии зависит от времени. В частности, если в начальный момент времени квантовая система находилась в единственном состоянии , входящем в некоторую полную систему функций, не зависящих от времени, то в последующие моменты времени она может быть обнаружена в других состояниях , входящих в ту же систему. Таким образом, при воздействии на квантовую систему зависящих от времени возмущений она может совершать переходы из одних стационарных состояний в другие. При этом согласно основным принципам квантовой механики вероятность перехода из -го состояния в -ое к моменту времени  определяется квадратом модуля функции  в (5), (при условии, что ). Поэтому для вычисления вероятности перехода квантовой системы под действием зависящего от времени возмущения необходимо найти ее волновую функцию из уравнения (1) и разложить эту функцию по любой полной системе функций. Нахождение волновых функций квантовых систем из уравнения (1) в случае зависящего от времени гамильтониана, как правило, представляет собой сложную математическую проблему, поскольку в уравнении Шредингера не разделяются временная и пространственные переменные. В некоторых случаях возможны, однако, простые решения этой задачи.

Пусть зависимость гамильтониана от времени «слабая», то есть гамильтониан представим в виде

    (6)

где от времени зависит только малое возмущение . Основная идея решения уравнения Шредингера (1) в этом случае заключается в следующем. Разложим волновую функцию квантовой системы  по образующим полную систему собственным функциям  не зависящего от времени гамильтониана

    (7)

где  - некоторые неизвестные функции времени. Если выделить из них временные экспоненты , то можно функцию  представить в виде

    (8)

где в отличии от (2) коэффициенты  являются некоторыми функциями времени. Если возмущение мало, то коэффициенты  должны слабо зависеть от времени и их можно искать в виде ряда по степеням возмущения

   (9)

причем «нулевое» слагаемое  определяется волновой функцией системы до включения возмущения. Подставляя ряд (9) во временное уравнение (1) и собирая слагаемые одного порядка малости по , можно получить явные выражения для . Такой метод нахождения функций  называется теорией нестационарных возмущений (иногда ее называют также «нестационарной теорией возмущений»). Приведем здесь только окончательные формулы этого метода.

Пусть до момента включения возмущения при  квантовая система находилась в -ом стационарном состоянии гамильтониана . Тогда , а функции  в первом порядке по возмущению  определяются соотношениями

    (10)

    (11)

В формулах (10), (11) введены следующие обозначения, часть из которых уже использовалась ранее. Величины:

представляют собой матричные элементы оператора возмущения в базисе собственных функций , величина

имеющая размерность «1/время», называется частотой перехода между стационарными состояниями  и . Согласно основным принципам квантовой механики квадраты модулей коэффициентов  определяют вероятности перехода из начального состояния (-го собственного состояния гамильтониана ) в конечное (-е собственное состояние гамильтониана ) к моменту времени . Из формулы (10) следует, что вероятность перехода к моменту времени  определяется соотношением

   (12)

Если в некоторый момент времени  возмущение обращается в нуль (или, как часто, хотя и несколько жаргонно, говорят, «выключается»), то после этого система снова описывается волновой функцией вида (2), и, следовательно, в дальнейшем  вероятность обнаружить ее в том или ином состоянии не зависит от времени. Поэтому при

   (13)

Соотношение (8.13) позволяет вычислить вероятность перехода в первом порядке нестационарной теории возмущений. Условием применимости этого соотношения является условие малости суммарной вероятности перехода во все состояния  (или близкая к единице вероятность остаться в состоянии ). Подчеркнем, что в результате действия зависящих от времени возмущений квантовые системы, вообще говоря, оказываются в состояниях с неопределенными энергиями (их волновые функции представляют собой суперпозиции многих стационарных состояний) и, согласно принципам квантовой механики при измерениях могут быть обнаружены в различных состояниях. «На наблюдательном языке» это значит, что при одновременном измерении энергии тождественных квантовых систем, подвергающихся воздействию одинаковых возмущений, можно с определенными вероятностями получать различные значения.

Поскольку вероятность перехода – мала, то вычислять вероятность того, что система останется в начальном состоянии как:

     (14)

нельзя. Это связано с тем, что неучтенные в (14) слагаемые квадратичны по возмущению и при возведении (14) в квадрат дадут перекрестное слагаемое с единицей, также квадратичное по возмущению как и вероятность перехода (13) Поэтому вероятность того, что система останется  в исходном состоянии, следует вычислять из условия нормировки вероятностей всех возможных переходов, то есть как

  (15)

На следующей лекции мы рассмотрим примеры применения теории нестационарных возмущений для простейших квантовых систем.

4


 

А также другие работы, которые могут Вас заинтересовать

39213. Музыкальное самообразование: содержание и способы 47.5 KB
  Эти формы музыкального воспитания обязательным компонентом включают в себя элементы обучения регламентируемые дидактическими основаниями. Важнейшее направление школьной музыкальной работы подготовка учащихся к самостоятельному знакомству с высокой музыкой к музыкальному самообразованию на что в первую очередь должна быть направлена деятельность учителя музыки и музыкального руководителя внеклассного коллектива. Направленность на самообразование урочной и внеурочной системы музыкального воспитания учеников может послужить достаточным...
39214. НАУЧНОЕ ЗНАНИЕ КАК СИСТЕМА 45.18 KB
  Философия и методология научного познания Тема 3 Лекция 4 НАУЧНОЕ ЗНАНИЕ КАК СИСТЕМА Формы знаний: научное и вненаучное знание Наука как социокультурный феномен Роль практики в научном знании ФОРМЫ ЗНАНИЙ: НАУЧНОЕ И ВНЕНАУЧНОЕ ЗНАНИЕ Познание не ограничено сферой науки знание в той или иной своей форме существует и за пределами науки. Появление научного знания не отменило и не упразднило не сделало бесполезными другие формы знания. Каждой форме общественного сознания: науке философии мифологии политике религии и т. ...
39215. НАУЧНОЕ ЗНАНИЕ КАК СИСТЕМА 54.4 KB
  Философия и методология научного познания Тема 3 Лекция 5 НАУЧНОЕ ЗНАНИЕ КАК СИСТЕМА Структура научного знания Классификация наук и периодизация истории науки СТРУКТУРА НАУЧНОГО ЗНАНИЯ Наука это форма духовной деятельности людей направленная на производство знаний о природе обществе и о самом познании имеющая непосредственной целью постижение истины и открытие объективных законов на основе обобщения реальных фактов в их взаимосвязи для того чтобы предвидеть тенденции развития действительности и способствовать ее изменению....
39216. Социально-гуманитарное познание 95.5 KB
  1 Герменевтика представляет собой направление в философии занимающееся проблемой теории и практики понимания текста. Герменевтический подход позволяет исследовать процесс понимания текста. Философские основы герменевтики позволяют изучить проблему понимания текста как на теоретическом так и на практическом уровне. С позиций герменевтики процесс понимания текста выглядит следующим образом.
39217. ФИЛОСОФИЯ НАУКИ КАК ОБЛАСТЬ ЗНАНИЯ 31.83 KB
  ФИЛОСОФИЯ НАУКИ КАК ОБЛАСТЬ ЗНАНИЯ Соотношение философии и науки Понятийный аппарат философии Статус научности философии Вопрос 1. Соотношение философии и науки Существует многолетний спор философии и науки о том в чем больше нуждается общество в философии или науке и какова их действительная взаимосвязь Является ли философия наукой всех наук т. стоять над частными дисциплинами или она должна быть одной из частных наук в ряду прочих На этот вопрос можно ответить прояснив соотношение философии и науки: Специальные...
39218. ФИЛОСОФИЯ НАУКИ КАК НАПРАВЛЕНИЕ СОВРЕМЕННОЙ ФИЛОСОФИИ 51.16 KB
  ФИЛОСОФИЯ НАУКИ КАК ОБЛАСТЬ ЗНАНИЯ ЛЕКЦИЯ 2.ФИЛОСОФИЯ НАУКИ КАК НАПРАВЛЕНИЕ СОВРЕМЕННОЙ ФИЛОСОФИИ 2.ПРЕДМЕТНАЯ СФЕРА ФИЛОСОФИИ НАУКИ КАК ДИСЦИПЛИНЫ ВОПРОС 1. ФИЛОСОФИЯ НАУКИ КАК НАПРАВЛЕНИЕ СОВРЕМЕННОЙ ФИЛОСОФИИ Непосредственной предшественницей философии науки является гносеология XVII XVIII вв.
39219. Динамика науки как процесс порождения нового знания 131 KB
  Философия и методология научного познания Тема 2 Лекция 3 Динамика науки как процесс порождения нового знания Сущность и движущие силы развития научного знания. Концепция исторической динамики науки Т. Этот процесс можно рассматривать как движение от мифа к логосу от логоса к преднауке от преднауки к науке от классической науки к неклассической и далее к постнеклассической и т. В философии науки вопрос о сущности и движущих силах развития научного знания сводится к следующим аспектам: Сущность динамики науки – это просто...
39220. ЭКОНОМИКА СТРОИТЕЛЬСТВА 668.5 KB
  Все они используют одни и те же методические документы по составлению смет и нормативные базы ЭСН84 ЕРЕР84 СниР91 ЕРС99 ГЭСН2001 ТЕР2001 и др. Затраты труда рабочих и машинистов на единицу определяются по сборникам ГЭСН2001. ГЭСН отражают среднеотраслевые затраты на эксплуатацию строительных машин и механизмов в зависимости от видов работ. 2004 N п п Виды строительных и монтажных работ Нормативы накладных расходов в к фонду оплаты труда рабочих строителей и механизаторов Область применения номера сборников ГЭСН ГЭСНм...
39221. Социология права 16.28 KB
  Социология права (юридическая социология) – отрасль общей социологии (наряду с такими ее отраслями, как социология культуры, социология политики, социология религии и т. д.)