19047

Теория нестационарных возмущений. Переходы под влиянием возмущений, зависящих от времени

Лекция

Физика

Лекция 29 Теория нестационарных возмущений. Переходы под влиянием возмущений зависящих от времени Согласно постулатам квантовой механики волновая функция любой квантовой системы удовлетворяет временному уравнению Шредингера 1 где гамильтониан системы...

Русский

2013-07-11

777 KB

9 чел.

Лекция 29

Теория нестационарных возмущений. Переходы под влиянием возмущений, зависящих от времени

Согласно постулатам квантовой механики волновая функция любой квантовой системы удовлетворяет временному уравнению Шредингера

    (1)

где  - гамильтониан системы. Если гамильтониан не зависит явно от времени, то общее решение временного уравнения Шредингера (1) имеет вид

   (2)

где  и  - собственные функции и собственные значения оператора Гамильтона системы, а постоянные  определяются начальной волновой функцией :

    (3)

Так как решение (2) представляет собой разложение волновой функции системы по собственным функциям оператора Гамильтона, то вероятность обнаружить при измерении энергии  квантовой системы, что  (то есть вероятность обнаружить квантовую систему в -ом собственном состоянии гамильтониана) равна

   (4)

Из (4) следует, что если гамильтониан квантовой системы не зависит от времени, то вероятность обнаружить систему в том или ином собственном состоянии гамильтониана не зависит от времени. В частности, если в начальный момент времени квантовая система находилась в -ом собственном состоянии гамильтониана (в сумме (2) – одно слагаемое), то она будет находится в нем в любой момент времени (то есть в сумме (2) так и останется одно слагаемое).. Действительно, в этом случае ,  и, как это следует из (4), ,  в любой момент времени.

Совершенно другое положение имеет место в случае, когда гамильтониан явно зависит от времени. Такие случаи реализуются, например, когда стационарные квантовые системы подвергаются воздействию внешних возмущений, зависящих от времени. В этом случае функция вида (2) уже не является решением  временного уравнения Шредингера (1) ни при каком выборе постоянных . Поэтому коэффициенты разложения волновой функции  по любой полной системе функций и, в частности, по собственным функциям гамильтониана системы в какой-то момент времени

    (5)

являются функциями времени, квадраты модуля которых зависят от времени. Следовательно, вероятность обнаружить квантовую систему в том или ином квантовом состоянии зависит от времени. В частности, если в начальный момент времени квантовая система находилась в единственном состоянии , входящем в некоторую полную систему функций, не зависящих от времени, то в последующие моменты времени она может быть обнаружена в других состояниях , входящих в ту же систему. Таким образом, при воздействии на квантовую систему зависящих от времени возмущений она может совершать переходы из одних стационарных состояний в другие. При этом согласно основным принципам квантовой механики вероятность перехода из -го состояния в -ое к моменту времени  определяется квадратом модуля функции  в (5), (при условии, что ). Поэтому для вычисления вероятности перехода квантовой системы под действием зависящего от времени возмущения необходимо найти ее волновую функцию из уравнения (1) и разложить эту функцию по любой полной системе функций. Нахождение волновых функций квантовых систем из уравнения (1) в случае зависящего от времени гамильтониана, как правило, представляет собой сложную математическую проблему, поскольку в уравнении Шредингера не разделяются временная и пространственные переменные. В некоторых случаях возможны, однако, простые решения этой задачи.

Пусть зависимость гамильтониана от времени «слабая», то есть гамильтониан представим в виде

    (6)

где от времени зависит только малое возмущение . Основная идея решения уравнения Шредингера (1) в этом случае заключается в следующем. Разложим волновую функцию квантовой системы  по образующим полную систему собственным функциям  не зависящего от времени гамильтониана

    (7)

где  - некоторые неизвестные функции времени. Если выделить из них временные экспоненты , то можно функцию  представить в виде

    (8)

где в отличии от (2) коэффициенты  являются некоторыми функциями времени. Если возмущение мало, то коэффициенты  должны слабо зависеть от времени и их можно искать в виде ряда по степеням возмущения

   (9)

причем «нулевое» слагаемое  определяется волновой функцией системы до включения возмущения. Подставляя ряд (9) во временное уравнение (1) и собирая слагаемые одного порядка малости по , можно получить явные выражения для . Такой метод нахождения функций  называется теорией нестационарных возмущений (иногда ее называют также «нестационарной теорией возмущений»). Приведем здесь только окончательные формулы этого метода.

Пусть до момента включения возмущения при  квантовая система находилась в -ом стационарном состоянии гамильтониана . Тогда , а функции  в первом порядке по возмущению  определяются соотношениями

    (10)

    (11)

В формулах (10), (11) введены следующие обозначения, часть из которых уже использовалась ранее. Величины:

представляют собой матричные элементы оператора возмущения в базисе собственных функций , величина

имеющая размерность «1/время», называется частотой перехода между стационарными состояниями  и . Согласно основным принципам квантовой механики квадраты модулей коэффициентов  определяют вероятности перехода из начального состояния (-го собственного состояния гамильтониана ) в конечное (-е собственное состояние гамильтониана ) к моменту времени . Из формулы (10) следует, что вероятность перехода к моменту времени  определяется соотношением

   (12)

Если в некоторый момент времени  возмущение обращается в нуль (или, как часто, хотя и несколько жаргонно, говорят, «выключается»), то после этого система снова описывается волновой функцией вида (2), и, следовательно, в дальнейшем  вероятность обнаружить ее в том или ином состоянии не зависит от времени. Поэтому при

   (13)

Соотношение (8.13) позволяет вычислить вероятность перехода в первом порядке нестационарной теории возмущений. Условием применимости этого соотношения является условие малости суммарной вероятности перехода во все состояния  (или близкая к единице вероятность остаться в состоянии ). Подчеркнем, что в результате действия зависящих от времени возмущений квантовые системы, вообще говоря, оказываются в состояниях с неопределенными энергиями (их волновые функции представляют собой суперпозиции многих стационарных состояний) и, согласно принципам квантовой механики при измерениях могут быть обнаружены в различных состояниях. «На наблюдательном языке» это значит, что при одновременном измерении энергии тождественных квантовых систем, подвергающихся воздействию одинаковых возмущений, можно с определенными вероятностями получать различные значения.

Поскольку вероятность перехода – мала, то вычислять вероятность того, что система останется в начальном состоянии как:

     (14)

нельзя. Это связано с тем, что неучтенные в (14) слагаемые квадратичны по возмущению и при возведении (14) в квадрат дадут перекрестное слагаемое с единицей, также квадратичное по возмущению как и вероятность перехода (13) Поэтому вероятность того, что система останется  в исходном состоянии, следует вычислять из условия нормировки вероятностей всех возможных переходов, то есть как

  (15)

На следующей лекции мы рассмотрим примеры применения теории нестационарных возмущений для простейших квантовых систем.

4


 

А также другие работы, которые могут Вас заинтересовать

52273. Профессиональная азбука духовности 81 KB
  Установочномотивационный этап 5 мин Осмысление поставленных задач формирование установки на сотрудничество. Ситуация для группы Мир Труд не позорит человека: к несчастью иногда попадают люди позорящие работу. Вспомните и запишите поговорки пословицы о труде и изобразите их в виде рисунка. Бенчли Великая радость – работа В полях за станком за столом Работай до жаркого пота Работай без лишнего счета Все счастье земли – за трудом В.
52274. Азбуку міста вивчай до ладу, щоб не потрапити раптом в біду 285.5 KB
  Приспів: На дорозі не спіши Щоб не трапилось біди. Світлофор не спить і не дріма До порядку на дорозі всіх нас кличе. На дорозі зупинись Вліво вправо подивись Чемним будь ти у автобусі й трамваї. Я друзі гарно прогулявся Там де машини так награвся Я немаленький вже на зріст До того ж маю гарний хвіст Нікого слухать не збираюсь Бо я дорослий і на дорозі часто граюсь.
52275. Весела нотна азбука 247.5 KB
  Вміння співати по нотах сприяє розвитку музичних здібностей дітей. Навчання молодших школярів музичної грамоти передбачає такі завдання: – розвинути музичні здібності дітей: ладове чуття музичнослухові уявлення музичноритмічне чуття чуття цілого форми; – дати основи нотної грамоти яка є складовою музичної грамоти навчити дітей розуміти нотний запис і сформувати вміння співати по нотах; – сформувати уявлення про елементи музичної мови засоби музичної виразності та музичні явища; – навчити розуміти ідейнохудожній зміст музичних...
52276. Повторювально-узагальнюючий урок за темою: «Передня Азія» 40 KB
  Назвати річки що протікають через Межерічча. Назвати та показати місто яке називали Ворота Божі. Назвати військову державу що розташована у верхній течії р. Назвати столицю Ассирійської імперії яку називали містом крові.
52277. Уроки державної мови 5.42 MB
  Ось що радить доктор філологічних наук Світлана Єрмоленко. У мовній практиці часом використовують ці лексеми як взаємозамінні. Але взаємозамінність у термінологічних висловах – річ небажана, і зрештою в кожному конкретному звороті утворюється якесь одне термінологічне слово, а інші, якщо вони не мають додаткових значеннєвих відтінків, виходять із літературно-нормативного вжитку.
52278. Бабуся – берегиня нашого роду 117 KB
  Та запросили у гості сьогодні тих людей яких обєднує не вік а високе почесне звання бабуся Ми зібралися великою родиною щоб вітати й вшановувати найрідніших найближчих нам людей. Що в мене є бабуся. Учитель: Так кого ж ми називаємо таким теплим іменем бабуся Діти відповідають а вчитель їх підводить до висновку що це мати мами або...
52279. Жизненная сила музыки И.С. Баха 69 KB
  Баха Цели и задачи урока: Закрепить понятие полифония на примерах вокального инструментального и произведения изобразительного искусства; Определить особенности содержания музыки И. Баха; Формировать: представление о стилистических особенностях музыки И. Баха понятие Сюита навыки хорового пения. Баха иллюстрации по теме урока стихи и высказывания по теме урока нотный материал.
52280. Бактериологическое оружие и его поражающие факторы 50.5 KB
  11й класс Цели: Познакомить учащихся с видами поражающими факторами бактериологического оружия. Обучить способам защиты от бактериологического оружия. Учебные вопросы: История применения бактериологического оружия. Краткая характеристика бактериологического оружия и его боевых свойств.
52281. Злочини бактерій проти людства 68 KB
  Характеристика холери менінгококової хвороби дифтерії туберкульозу сифілісу. Стан захворюваності на туберкульоз в Україні. Обладнання: ПК; мультимедійний проектор; презентації: Хвороботворні бактерії: вчора і сьогодні Туберкульоз підступний вбивця Профілактика бактеріальних хвороб ; оцінювальні завдання; слайд із відповідями на завдання; виставка газетбюлетенів: Кишкові інфекції Туберкульоз підступний вбивця Імунітет на сторожі здоров’я . Фтизіатри з’ясувати особливості збудника туберкульозу причини поширення...