19050

Переходы под действием периодических возмущений. Резонансное приближение. Переходы в непрерывный спектр

Лекция

Физика

Лекция 32 Переходы под действием периодических возмущений. Резонансное приближение. Переходы в непрерывный спектр Рассмотрим теперь случай возмущений зависящих от времени периодически. Пусть на частицу находящуюся в стационарном состоянии с энергией действует

Русский

2013-07-11

1.21 MB

46 чел.

Лекция 32

Переходы под действием периодических возмущений. Резонансное приближение. Переходы в непрерывный спектр

Рассмотрим теперь случай возмущений, зависящих от времени периодически. Пусть на частицу, находящуюся в стационарном состоянии с энергией , действует малое периодическое возмущение

      (1)

где  - частота возмущения, причем возмущение действует в течение длительного времени , так что  (в противном случае бессмысленно говорить о периодичности возмущения, даже если оно описывается формулой (1). Докажем, что в первом порядке теории возмущений переходы с заметной вероятностью происходят только в такие состояния , энергия которых отличаются от энергии начального состояния на величину : .

Исходим из формулы теории нестационарных возмущений

   (2)

где  - матричный элемент оператора . Интеграл по времени вычисляется элементарно:

   (3)

Рассмотрим зависимость вероятности перехода (2), (3) от частоты возмущения  для больших значений времени действия возмущения . Как будет показано ниже, первое слагаемое в формуле (3) как функция частоты возмущения имеет узкий максимум при частоте , второе - при частоте . Или, другими словами, под действием периодического возмущения с частотой  в квантовой системе происходят переходы только в состояния  с энергией . Поэтому при анализе зависимости вероятности (2), (3) от частоты возмущения  достаточно рассмотреть только значения  и и ограничится в первом случае только первым слагаемым формулы (3), во втором - вторым. Отметим, что так как , первый случай отвечает переходам  в состояния  с энергией , большей энергии , второй – с меньшей. Итак, при  из (2), (3) имеем

 (4)

Рассмотрим зависимость вероятности перехода  (4) от частоты возмущения при больших значениях . Если , то  в (4) можно разложить в ряд и

     (5)

Если же , то  в (5) может для разных  принимать все значения от нуля до единицы и, следовательно,

   (6)

Таким образом, если частота возмущения  лежит в узком интервале частот  вблизи частоты, равной , то вероятность перехода , существенно превосходит вероятность этого перехода, происходящего под действием возмущения с частотой, вне этого интервала (причем этот интервал тем уже, чем больше время действия возмущения). Другими словами, при фиксированной частоте возмущения  квантовая система с подавляющей вероятностью совершает переходы только в такие состояния , энергии которых определяется соотношением , где  - энергия начального состояния. Аналогичное рассмотрение второго слагаемого в (3) приводит к возможности перехода в состояния  с энергиями . Переходы в состояния с другими энергиями под действием периодических возмущений маловероятны. При этом, если выполняются строгие равенства , вероятность перехода  при достаточно больших  может стать большой, и для ее вычисления теория возмущений может оказаться неприменимой.

В этом случае используют другое приближение, которое называют резонансным. Основная идея его заключается в том, что если частота возмущения близка к частоте перехода между двумя состояниями, то с подавляющей вероятностью переходы будут происходить только в одно состояние, а всеми остальными слагаемыми в разложении волновой функции системы по волновым функциям стационарных состояний можно пренебречь.

Итак, пусть

 

и  близко к  ( - частота перехода между двумя состояниями  и  в системе); пусть (для определенности) - чуть больше:

 

Величину  называют «отстройкой».

Если нет резонанса, используем теорию возмущений. Для состояний  и  справедливо стационарное уравнение Шредингера:

  (7)

(мы выбрали начало отсчета энергий посередине между энергиями состояний  и ). Будем искать решения уравнения

  (8)

в виде

 

(в этом и состоит резонансное приближение). Подставляя это выражение в уравнение (8) и оставляя только главные члены (зависимость которых от времени определяется малой частотой ), получим

 

 (9)

Делаем подстановку , получаем

 (10)

Исключаем из этих уравнений , получим:

  (11)

В качестве линейно независимых решений этих уравнений выбираем

 

 (12)

где  постоянные, и введены обозначения

 (13)

Таким образом, под влиянием возмущения функции  и  переходят в функции  с коэффициентами (12), (13). Из этих формул следует, что если в начальный момент система находилась в состоянии , то коэффициент при  в последующем равен

    (14)

Из формулы (14) следует, что система периодически (с периодом ) переходит из одного состояния в другое и обратно. Частота  называется частотой Раби.

Рассмотрим теперь переходы под действием периодического возмущения из стационарных состояний дискретного в состояния непрерывного спектра (например, ионизация атома, когда электрон из связанного состояния переходит в непрерывный спектр). Возмущение запишем как (здесь явно учтена эрмитовость возмущения)

  (15)

Так как спектр непрерывен, то всегда найдется энергия, в точности удовлетворяющая условию

  (16)

и, следовательно, переход всегда будет. В выражении для  оставляем только:

  (17)

Вероятность перехода за время  равна:

  (18)

Вводим . Тогда:

  (19)

Мы интересуемся вероятностью ионизации за время, много большее периода собственных колебаний системы. Рассмотрим . 

  (20)

Поэтому

  (21)

Вероятность перехода в единицу времени есть

  (22)

4


 

А также другие работы, которые могут Вас заинтересовать

20498. Таблиці та дерева рішень 38.5 KB
  Метод дерева рішень це один з методів автоматичного аналізу величезних масивів даних. Область використання методу дерева рішень можна об'єднати в три класи: опис даних: застосування дерева рішень дозволяє зберігати інформацію про вибірку даних в компактній і зручній для обробки формі що містить в собі точні описи об'єктів; класифікація: застосування дерева рішень дозволяє справитися із завданнями класифікації тобто відношення об'єктів до одного з описаних класів; регресія: якщо змінна має недостовірні значення то застосування дерева...
20499. Теорія реляційних баз даних. Основні терміни і означення. Нормалізація відношень 31 KB
  Реляційна база даних база даних основана на реляційній моделі даних. Інакше кажучи реляційна база даних це база даних яка сприймається користувачем як набір нормалізованих відношень різного ступеню. Метою нормалізації є усунення недоліків структури БД які призводять до шкідливої надмірності в даних яка в свою чергу потенційно призводить до різних аномалій і порушень цілісності даних.
20500. Трикутні матриці (верхня та нижня) і їх розклад на добуток двох трикутних 37 KB
  Трику́тна ма́триця матриця в якій всі елементи нижче або вище за головну діагональ рівні нулю. Верхньотрикутна матриця квадратна матриця в якій всі елементи нижче за головну діагональ дорівнюють нулю. Нижньотрикутна матриця квадратна матриця в якій всі елементи вище за головну діагональ дорівнюють нулю. Унітрикутна матриця верхня або нижня трикутна матриця в якій всі елементи на головній діагоналі дорівнюють одиниці.
20501. Форми, типи форм, обчислення в формах 33 KB
  Робота з формами може відбуватися в трьох режимах: у режимі Форми в режимі Таблиці в режимі констриктор. типи форм В Access можна створити форми наступних видів: форма в стовпець або повноекранна форма; стрічкова форма; таблична форма; форма головна підпорядкована; зведена таблиця; формадіаграма. Форма в стовпець є сукупністю певним чином розташованих полів введення з відповідними їм мітками і елементами управління.
20502. Маніпулювання даними, операції над схемою бази даних за допомогою мови SQL 27.5 KB
  Маніпулювання даними операції над схемою бази даних за допомогою мови SQL Для маніпулювання данними виділяють такі групи команд SQL:Команди мови визначення даних DDL Data Definition Language. DDL Data Definition Language мова визначення даних це підмножина SQL що використовується для визначення та модифікації різних структур даних.До даної групи відносяться команди призначені для створення зміни та видалення різних об'єктів бази даних. Команди CREATE створення ALTER модифікація і DROP видалення мають...
20503. Матриця суміжності та матриця інцидентності 28 KB
  Матриця суміжності графа G зі скінченною кількістю вершин n пронумерованих числами від 1 до n це квадратна матриця A розміру n в якій значення елементу aij рівне числу ребер з iї вершини графа в jу вершину. Матриця суміжності простого графа що не містить петель і кратних ребер є бінарною матрицею і містить нулі на головній діагоналі. Матриця суміжності неорієнтованого графа симетрична а значить володіє дійсними власними значеннями і ортогональним базисом з власних векторів.
20504. Метод ітерації (метод послідовних наближень) 88 KB
   Суть методу полягає у заміні початкового рівняння 4.18 еквівалентним йому рівнянням 4.19 Постановка задачі Нехай задано рівняння де неперервна нелінійна функція. Потрібно визначити корінь цього рівняння який знаходиться на відрізку з заданою похибкою .
20505. Метод послідовних наближень (метод ітерацій) для розв’язку системи лінійних рівнянь 91 KB
  11 пошуку розвязку системи с заданою похибкою відповідно теоремі про збіжність.11 виконується то ітераційний процес пошуку розвязку системи с заданою похибкою збігається і метод послідовних наближень можна використовувати.13 що легко розвязується для знаходження вектора розвязку першого наближення тому що в правої частині містить всі визначені елементи.
20506. Мова запитів SQL. Огляд її можливостей 27 KB
  Він по суті містив тільки пропозиція SELECT яке дозволяло формулювати запити для вибірки даних з бази. Потім мова була доповнено двома іншими компонентами необхідними для роботи з базами даних. Перший з них компонент для визначення структури бази даних які в термінології теорії баз даних називаються мовою визначення даних МВД. Другий засоби що дозволяють заповнювати базу даних змінювати їх і видаляти.