19061

Операторы координаты и импульса (продолжение). Различные представления волновой функции

Практическая работа

Физика

Семинар 5. Операторы координаты и импульса продолжение. Различные представления волновой функции Напомнить и обсудить основную идею различных представлений волновой функции в квантовой механике разложение по системам собственных функций тех или иных операторов. ...

Русский

2013-07-11

96 KB

8 чел.

Семинар 5. Операторы координаты и импульса (продолжение). Различные представления волновой функции

Напомнить и обсудить основную идею различных представлений волновой функции в квантовой механике – разложение по системам собственных функций тех или иных операторов. Продемонстрировать возможности этого метода на примере координаты и импульса.

Цель занятия – познакомиться с возможностью задания волновой функции в различных представлениях, в частности, координатном и импульсном.

Задача 1. Убедиться, что «коэффициенты» разложения  волновой функции частицы  по собственным функциям оператора импульса обладают всеми свойствами волновой функции, о которых говорится в постулатах квантовой механики, а каждой физической величине можно сопоставить оператор, действующий в пространстве функций , такой, что его собственные значения дают вероятности различных значений этой физической величины, а собственные функции позволяют находить вероятности различных значений этой физической величины в любых состояниях.

Задача 2. Частица находится в состоянии , где  - действительное число. Найти волновую функцию этого состояния в импульсном представлении.

Задача 3. Волновая функция частицы задана в импульсном представлении , где  - действительное число. Найти волновую функцию этого состояния в координатном представлении.

Задача 4. Нормированная волновая функция состояния частицы имеет вид

 

где  - действительное число. Найти волновую функцию этого состояния в импульсном представлении.

Задача 5. Найти операторы импульса и координаты в импульсном представлении.

Задача 6. Найти оператор энергии и его собственные функции в энергетическом представлении.

Задача 7. Оператор физической величины  имеет непрерывный спектр собственных значений  и собственных функций  ( нормированы на дельта-функцию от ). Частица находится в состоянии с волновой функцией . Как найти волновую функцию этого состояния  в -представлении?


Домашнее задание

1. Состояние частицы описывается волновой функцией . где  - некоторое действительное число. Найти волновую функцию этого состояния в импульсном представлении.

2. Состояние частицы описывается волновой функцией:

, где , ,  и  - некоторые действительные числа. Найти волновую функцию этого состояния  в импульсном представлении.

3. Волновая функция состояния частицы имеет вид , где  - постоянные. Найти волновую функцию этого состояния в импульсном представлении.

4. Нормированная волновая функция состояния частицы имеет вид

 

где  - действительное число. Найти вероятности различных значений импульса частицы в этом состоянии. Что больше, вероятность обнаружить при измерении импульса частицы, что , или что ? Используя найденные вероятности вычислить , ,  в рассматриваемом состоянии.

2


 

А также другие работы, которые могут Вас заинтересовать

16766. ЭФФЕКТИВНЫЕ ТЕХНОЛОГИИ ИЗВЛЕЧЕНИЯ УПОРНОГО ЗОЛОТА ИЗ РУД И КОНЦЕНТРАТОВ 37.5 KB
  ЭФФЕКТИВНЫЕ ТЕХНОЛОГИИ ИЗВЛЕЧЕНИЯ УПОРНОГО ЗОЛОТА ИЗ РУД И КОНЦЕНТРАТОВ Автор: Седельникова Г.В.Савари Е.Е.Крылова Г.С. Источник: Новые технологии добычи и переработки природного сырья в условиях экологических ограничений: Материа
16767. Автоклавное окисление сульфидных золотосодержащих концентратов повысило извлечение с 15 до 90% 105 KB
  Автоклавное окисление сульфидных золотосодержащих концентратов повысило извлечение с 15 до 90 Баликов С.В. д.т.н. Богородский А.В.аспирант ОАО Иргиредмет Золотодобыча №130 2009 К перспективным способам вскрытия золота и серебра в сульфидных концентратах относится м
16768. АВТОКЛАВНО-ТИОМОЧЕВИННАЯ ТЕХНОЛОГИЯ ИЗВЛЕЧЕНИЯ ЗОЛОТА ИЗ УПОРНЫХ МЫШЬЯКСОДЕРЖАЩИХ РУД 24.5 KB
  АВТОКЛАВНОТИОМОЧЕВИННАЯ ТЕХНОЛОГИЯ ИЗВЛЕЧЕНИЯ ЗОЛОТА ИЗ УПОРНЫХ МЫШЬЯКСОДЕРЖАЩИХ РУД Степанов Б.А. Синяшина И.В. Шарипов Х.Т. Ежков А.Б.РО Спецсплав АО Узнипроцветмет Ташкентский технический университет Республика Узбекистан Доля сульфидно мышьяковых...
16769. Актуальные проблемы геологии россипей 187 KB
  Россыпи — один из немногих типов месторождений полезных ископаемых, известных человеку с глубокой древности и не потерявших своего значения в настоящее время. В наши дни надежды геологов открыть новые россыпи прежде всего связаны с континентальными окраинами
16770. Классификация и геологическое строение россыпей 138 KB
  Виктор Л. Попов Классификация и геологическое строение россыпей. Россыпями называют рыхлые реже сцементированные скопления обломочного материала содержащие ценные компоненты представляющие промышленный интерес. Полезными компонентами в россыпях являются хи
16771. ВНАЧАЛЕ БЫЛИ ВУЛКАНЫ 299 KB
  ВНАЧАЛЕ БЫЛИ ВУЛКАНЫ Охотскочукотский вулканический пояс Членкорреспондент Российской АН А. СИДОРОВ. Опубликовано:Наука и жизнь 02. 1999г За свою долгую геологическую историю материки нашей планеты то объединялись в один суп
16772. Разработка Профиля Защиты для средства контентного анализа банковской системы 1.26 MB
  В процессе работы рассмотрены возможные модели нарушителей, основные уязвимости автоматизированных банковских систем, основные правила защиты автоматизированных банковских систем и модель угроз информационной безопасности организаций банковской системы Российской Федерации
16773. Возрождение золотой отрасли России 368.5 KB
  Возрождение золотой отрасли России В ходе своего визита в Магаданскую область в апреле 2006 года президент РФ В. В. Путин обратил внимание на проблемы золотодобычи что наглядно иллюстрирует значение этого сектора экономики для современной России. Магаданская область...
16774. Геологические основы рациональной разработки золоторудных месторождений 95.5 KB
  Геологические основы рациональной разработки золоторудных месторождений А.И. Образцов Навоийский ГМК Экономическая и природоохранная эффективность разработки месторождений кроме применяемых технических средств напрямую зависит от полноты использования соде