19065

Общие свойства стационарных состояний одномерного движения для дискретного спектра (разбор тестовых задач)

Практическая работа

Физика

Семинар 9. Общие свойства стационарных состояний одномерного движения для дискретного спектра разбор тестовых задач Выписать одномерное уравнение Шредингера и напомнить общие принципы нахождения его решений такие значения энергии при которых существуют к

Русский

2013-07-11

374.5 KB

1 чел.

Семинар 9.

Общие свойства стационарных состояний одномерного движения для дискретного спектра (разбор тестовых задач)

Выписать одномерное уравнение Шредингера

и напомнить общие принципы нахождения его решений (такие значения энергии, при которых существуют конечные решения, и сами эти решения). Напомнить, при каких энергиях существуют состояния дискретного, при каких непрерывного спектра. Осцилляционную теорему и свойства четности решений в случае четного потенциала. Затем с минимальными разборами, давая комментировать результаты студентам, рассмотреть большое число тестовых задач, посвященных общим свойствам решений одномерного уравнения Шредингера. Вовлечь в эту работу всех студентов.

Задача 1. Какие состояния являются связанными?

А. двукратно вырожденные состояния дискретного спектра  б. невырожденные стационарные состояния непрерывного спектра в. двукратно вырожденные состояния непрерывного спектра   г. невырожденные стационарные состояния дискретного спектра

Задача 2. Потенциальная энергия стремится к  при  (см. рисунок). Все уровни энергии частицы в такой яме

а. не вырождены  б. двукратно вырождены   в. часть уровней не вырождена, часть двукратно вырождена   г. зависит от конкретного вида потенциала

Задача 3. Частица движется в некотором потенциале . Известно, что  при  (см. рисунок к предыдущей задаче). Существуют ли среди стационарных состояний частицы состояния, относящиеся к непрерывному спектру?

А. да   б. нет   в. в некоторых случаях да, в некоторых случаях нет

г. зависит от потенциала

Задача 4. Дан график зависимости потенциальной энергии  от координаты  (см. рисунок). Указать области, в которых могут существовать стационарные состояния дискретного спектра

а.   б.   в.     г.   и

Задача 5. Дан график зависимости потенциальной энергии  от координаты  (см. рисунок к задаче 4). Указать области, в которых могут существовать стационарные состояния непрерывного спектра

а.   б.  в.    г.   и

Задача 6. Дан график зависимости потенциальной энергии  от координаты  (см. рисунок к задаче 4). При каких энергиях существуют невырожденные стационарные состояния непрерывного спектра

а. при   б. при   в. при   г. при

Задача 7.  Дан график зависимости потенциальной энергии от координаты  (см. рисунок к задаче 4). При каких энергиях заведомо не существует стационарных состояний?

А.   б.    в.    г.  

Задача 8. Потенциальная энергия обращается в нуль при  (см. рисунок). Какова кратность вырождения собственных значений гамильтониана, относящихся к непрерывному спектру?

А. не вырождены  б. двукратно вырождены  в. часть собственных значений не вырождена, часть двукратно вырождена г. зависит от конкретного вида потенциала

Задача 9. Дан график зависимости потенциальной энергии  от координаты  (см. рисунок). При каких энергиях существуют стационарные состояния дискретного спектра?

А. при   б. при   в. при   г. состояний дискретного спектра в таком потенциале нет

Задача 10. Частица движется в некотором потенциале . Известно, что  при , и  при  (см. рисунок). Существуют ли среди стационарных состояний частицы состояния, относящиеся к дискретному спектру?

А. да  б. нет  в. в некоторых случаях да, в некоторых случаях нет г. зависит от потенциала

Задача 11. Частица движется в некотором потенциале . Известно, что  при , и  при  (см. рисунок к предыдущей задаче). Существуют ли среди стационарных состояний частицы двукратно вырожденные состояния?

А. да  б. нет  в. в некоторых случаях да, в некоторых случаях нет г. зависит от потенциала

Задача 12. Частица движется в потенциале , график которого представлен на рисунке. Какой формулой описывается асимптотика собственной функции оператора Гамильтона при энергии  (показана на рисунке) при ?

А. , где  б. , где

в. , где  г. , где

Задача 13. Частица движется в потенциале , график которого представлен на рисунке к предыдущей задаче. Какой формулой описывается асимптотика собственной функции оператора Гамильтона при энергии  (показана на рисунке) при ?

А. , где  б. , где   в. определенная линейная комбинация  и , где  г. определенная линейная комбинация  и , где

Задача 14. Частица движется в потенциале , график которого представлен на рисунке. Пусть некоторая энергия  (показана на рисунке) является собственным значением гамильтониана. Какими формулами описываются асимптотики соответствующей собственной функции при  и ?

А. , где , и , где ,

б. , где , и , где ,

в. , где , и , где ,  г. другими

Задача 15. Частица движется в потенциале , который стремится к некоторым постоянным при  (см. рисунок к предыдущей задаче). Как ведут себя волновые функции двукратно вырожденных стационарных состояний при ?

А. растут  б. затухают  в. осциллируют г. на одной бесконечности затухают, на другой осциллируют

Задача 16. Частица движется в потенциале , который стремится к некоторым постоянным при  (см. рисунок к задаче 14). Как ведут себя волновые функции невырожденных состояний непрерывного спектра при ?

А. растут б. затухают в. осциллируют г. на одной бесконечности затухают, на другой осциллируют

Задача 17. Как ведет себя при  волновые функции связанных состояний частицы в некотором потенциале?

А. растут  б. затухают  в. осциллируют г. на одной бесконечности затухают, на другой осциллируют

Задача 18. Частица движется в некотором потенциале , который обращается в нуль при . Волновая функция третьего возбужденного состояния дискретного (четвертого по счету состояния в порядке возрастания энергии) спектра имеет

а. один узел  б. два узла        в. три узла          г. четыре узла

Задача 19. На рисунке сплошной и пунктирной линией показаны графики двух собственных функций одномерного оператора Гамильтона. Какая из этих функция отвечает большему собственному значению?

А. «сплошная»  б. «пунктирная»      в. эти функции отвечают вырожденным по энергии состояниям  г. информации для ответа недостаточно

Задача 20. Собственная функция одномерного оператора Гамильтона имеет вид (см. рисунок). Что можно сказать о соответствующем собственном значении?

А. относится к дискретному спектру  б. относится к непрерывному спектру  в. двукратно вырождено г. информации для ответа недостаточно

Задача 21. Собственная функция одномерного оператора Гамильтона имеет вид (см. рисунок). Какому собственному состоянию отвечает эта функция?

А. второму состоянию дискретного спектра (в порядке возрастания энергии)  б. третьему состоянию дискретного спектра  в. четвертому состоянию дискретного спектра  г. пятому состоянию дискретного спектра

Задача 22. На рисунке показан график собственной функции одномерного оператора Гамильтона (на  она затухает, на  осциллирует). Какое утверждение относительно свойств этой функции верно?

А. эта функция отвечает дискретному спектру  б. эта функция отвечает невырожденному состоянию непрерывного спектра   в. эта функция отвечает двукратно вырожденному состоянию непрерывного спектра   г. все перечисленное – неверно

Задача 23. Потенциальная энергия частицы – четная функция координаты. Волновая функция третьего возбужденного стационарного состояния дискретного спектра (четвертого по счету состояния в порядке возрастания энергии) является

а. четной  б. нечетной  в. обладает неопределенной четностью г. четность зависит от конкретного вида потенциала

Задача 24. Потенциальная энергия частицы , где  - некоторое число. Волновая функция четвертого возбужденного состояния дискретного спектра (пятого по счету состояния в порядке возрастания энергии)

а. четная   б. нечетная  в. неопределенной четности  г. зависит от

Задача 25. Потенциальная энергия частицы  – четная функция координаты. Что можно сказать о волновых функциях стационарных состояний дискретного спектра?

А. все четные  б. все нечетные в. не обладают определенной четностью

г. четность чередуется (четная-нечетная-четная и т.д.)

Задача 26. Потенциальная энергия частицы  – нечетная функция координаты. Что можно сказать о волновых функциях стационарных состояний дискретного спектра?

А. все четные  б. все нечетные в. не обладают определенной четностью

г. четность чередуется (четная-нечетная-четная и т.д.)


Домашнее задание

Задачи (из вышеперечисленных), оставшиеся нерешенными, задать на дом.

6


 

А также другие работы, которые могут Вас заинтересовать

52878. Будемо святкувати. Let’s celebrate 228.5 KB
  Today's topic is «Let’s celebrate». Сьогодні нас запросили на вечірку до ведмедика. You are invited to the teddy bear birthday party. Але шлях до нього далекий і важкий. But this way is long and difficult. Він зачарований. It is magic. Тут ви можете побачити багато метеликів. Here you can see a lot of butterflies. Вони теж непрості, кожен має якесь завдання, яке нам треба виконати, щоб потрапити на свято. They are not simple, everyone has the task for you, which you should do to come to the party. Та вам треба бути дуже уважними. But you should be very attentive.
52880. Школа. School 1.18 MB
  Розробка уроку з англійської мови за темою School 2 клас Тема. Розвивальні цілі: розвивати лексичні навички та навички мовлення; формувати в учнів вміння переключатися на різні види діяльності; розвивати творче та логічне мислення память увагу; розвивати вміння римувати слова Виховні цілі: прищеплювати інтерес до вивчення англійської мови любов до школи Методи: ілюстративний аудіювання гра Засоби навчання: презентаціяілюстрації за темою завдання для виконання вправ під час аудіювання та розрізані...
52881. FOOD. SHOPPING. (3 клас) 51.5 KB
  Equipment: pictures of different kinds of food; texts for jigsaw reading; parts of the “puzzle pictures” in envelopes; a cassette, some sheets of paper with incomplete dialogues for pupils to fill in the gaps; a cap, some money and a basket for role-playing.
52882. Контроль читання з англійської мови у 3 класі за підручником “ New Let’s Learn English” 62 KB
  Hello. My name is Jim. I live in Eastbourne. I am nine. I like reading and playing football. I have got very nice toys. My favourite toys are a spaceship and a kite. I keep them in the cupboard. I also like watching videos. After school I like playing computer games.
52883. Святковий поїзд. Проектна робота 745 KB
  Закріпити вживання ЛО з теми «Місяці. Пори року». Розвивати лексичні, граматичні, мовленнєві навички, пам ять, мислення, фонетичний слух. Перевірити рівень мовної та мовленнєвої компетенції учнів. Тренувати в аудіюванні. Формувати здатність працювати в парі, групі.
52885. Погода взимку. Розваги 502.5 KB
  Winter is the fourth season. December, January and February are winter months. In winter it is cold. Winter is the coldest season of the year. All rivers and ponds are frozen. The ground is covered with snow. Trees and bushes are covered with snowflakes.
52886. Свята та традиції. New Year 1.98 MB
  Objectives: to develop the habits of reading, writing and speaking on the given topic; to practise the structure “there is/are”, asking and answering questions in Present Simple; to enlarge the students’ knowledge about holidays and traditions of the English-speaking countries.