19075

Основы литографических процессов. Фотолитография

Практическая работа

Физика

Лекция 4. Основы литографических процессов. Фотолитография В технологии микроэлектронных устройств литографические процессы универсальны и наиболее часто повторяемы. Они используются для получения контактных и прецизионных масок. Литографические процессы формирую...

Русский

2013-07-11

101.5 KB

36 чел.

Лекция 4.

Основы литографических процессов. Фотолитография

В технологии микроэлектронных устройств литографические процессы универсальны и наиболее часто повторяемы. Они используются для получения контактных и прецизионных масок. Литографические процессы формируют на поверхности слой стойкого к последующим технологическим воздействиям материала, способного под действием облучения определенной длины волны изменять необратимо свои свойства и прежде всего стойкость к проявителя. Резистивный слой, локально облученный с помощью шаблона, обрабатывают в проявителе, где в результате удаления локальных участков получают резистивную маску.

В зависимости от длины волны применяемого излучения различают оптическую (фотолитографию), рентгеновскую, электронную и ионную литографию.

ТИПЫ ЛИТОГРАФИИ И ПРОСТРАНСТВЕННОЕ РАЗРЕШЕНИЕ

Тип литографии

Источник воздействия на резист

Пространственное

разрешение

Фотолитография

Ультрафиолет

0,35 – 2 мкм

Электронолитография

сканирующая

электроны

 1 нм (Uуск =15 кВ)

3 нм

Электронолитография

проэкционная

электроны

Uуск =20 кВ

0,1 мкм

Рентгенолитография

 0,4- 1,3  нм

0,5 – 1,0  мкм

Рентгенолитография

синхротронная

 1,3 = 2,5  нм

0,05 – 0,5  мкм

Ионная литография

Протоны

E=150-250 кэВ

0,04 – 0,1  мкм

Лазерная литография

УФ, оптика

0,35 – 2 мкм

Под фотолитографией понимают процесс образования на поверхности подложки с помощью светочувствительных материалов локальных защитных участков пленки (микроизображение), рельеф которых повторяет рисунок топологии или схемы, и последующего переноса этого микроизображения на подложку.

Сущность фотолитографии заключается в следующем. На поверхность специально обработанной пластины (подложки) наносят тонкий слой светочувствительного материала –фоторезиста. После высыхания фоторезиста на исходной подложке образуется прочная пленка. Облучение этой пленки фоторезиста через прижатый  к ней фотошаблон ( контактная печать) светом (как правило ультафиолетом) приводит к изменению ее свойств. Проявление и полимеризация пленки фоторезиста позволяют получить в ней рельеф нужного рисунка, т.е. открытые (свободные от пленки фоторезиста) и закрытые (наличие пленки фоторезиста) участки пленки. Образовавшийся в пленке фоторезиста рельеф определенного рисунка переносят на подложку.

Образующиеся в пленке фоторезиста "окна" позволяют проводить ряд важнейших технологических операций: локальное травление подложки с целью удаления слоя полупроводникового материала и создания мезаструктур, вытравливание металлических слоев с целью создания омических контактов и токоведущих дорожек сложной геометрической формы.

Фотолитография может быть контактной (шаблон при переносе изображения приводится в полный контакт с фоторезистом (ФР)) и бесконтактной ( на микрозазоре либо проекционная ФЛ).

Рассмотрим подробнее фотолитографию. ФОТОЛИТОГРАФИЯ, это совокупность фотохимических процессов, а также способ формирования рельефного покрытия заданной конфигурации с помощью фоторезистов. Ф. обычно включает: 1) нанесение фоторезиста на металл, диэлектрик или полупроводник методами центрифугирования, напыления или возгонки; 2) сушку фоторезиста при 90-110 0C для улучшения его адгезии к подложке; 3) экспонирование фоторезиста видимым или УФ излучением через фотошаблон (стекло, кварц и др.) с заданным рисунком для формирования скрытого изображения; осуществляется с помощью ртутных ламп (при контактном способе экспонирования) или лазеров (гл. обр. при проекционном способе); 4) проявление (визуализацию) скрытого изображения Путем удаления фоторезиста с облученного (позитивное изображение) или необлученного (негативное) участка слоя вымыванием водно-щелочными и органическими растворителями либо возгонкой в плазме высокочастотного разряда; 5) термическую обработку (дубление) полученного рельефного покрытия (маски) при 100-200 0C для увеличения его стойкости при травлении; б) травление участков свободной поверхности травителями кислотного типа (напр., на основе HF, NH4F или CH3COOH) или сухими методами (напр., галогенсодержащей плазмой); 7) удаление маски растворителями или выжиганием кислородной плазмой. Масштаб передачи рисунка фотошаблона обычно 1:1 или 5:1 и 10:1 (при проекционном способе экспонирования).

При изготовлении интегральных схем процесс повторяют многократно на различных технологических слоях материала и при этом каждый послед. рисунок должен быть совмещен с предыдущим.

Часто для придания фоторезистному покрытию специфических свойствв (повышение стойкости к травителям, уменьшение отражения излучения от подложки, планаризация рельефа и др.) формируют многослойные покрытия, в к-рых один из слоев, обычно верхний, является собственно фоторезистом, а остальные имеют вспомогательные функции. Двухслойное покрытие м. б. сформировано и в однослойном фоторезисте путем локальной хим. модификации поверхности.

Фотолитография может быть контактной (шаблон при переносе изображения приводится в полный контакт с фоторезистом (ФР)) и бесконтактной ( на микрозазоре либо проекционная ФЛ).

Разновидности Ф.: так называемая взрывная (для получения рисунка на пленках металла) и инверсионная (для получения профиля изображения с отрицательным наклоном стенок). В первом случае рисунок получается путем напыления слоя металла на пластину с проявленным фоторезистом, а при снятии фоторезиста удаляют часть металлического слоя, осевшего на маску; во втором - на позитивном фоторезисте получают негативный рисунок.

Основные требования к Ф.: высокая разрешающая способность, минимально привносимая дефектность и большая производительность, которые определяются обычно свойствами фоторезистов, параметрами фотолитографич. оборудования и чистотой технологических помещений.

Вместе с другими видами микролитографии - электроно-, рентгено- и ионолитографией (соответственно экспонирование потоком электронов, рентгеновскими лучами и ионами легких элементов) - Ф. является одним из методов планарной технологии и применяется для изготовления интегральных микросхем, печатных плат, запоминающих устройств, высокочастотных приборов и др.

ФОТОРЕЗИСТЫ

Фоторезисты – сложные полимерные композиции. Фоторезисты, у которых растворимость экспонированного участка уменьшается, называют негативными (ФН), а ФР, растворимость которых после облучения возрастает, - позитивными (ФП). После обработки экспонированного ФР в составе, удаляющем растворимые участки, образуется рельефное изображение ( см. рис. ), которое должно быть устойчивым к воздействию технологических факторов.

Нанесение ФР на подложку. Чаще всего этот процесс осуществляется центрифугированием. При включении центрифуги жидкий ФР растекается под действием центробежных сил. Прилегающий к подложке граничный слой формируется в результате уравновешивания центробежной силы, пропорциональной числу оборотов, и силы сопротивления, зависящей от адгезии молекул резиста.

Окончательному формированию слоя фоторезиста способствует сушка.

После создания рельефа – окончательная сушка

Удаление ФР:

  •  диметилформамид (CH3)2NCOH
  •  дибутилфталат (C6H4COOC4H9)2
  •  диоксан C4H8O2
  •  толуол С7Н8.

ФОТОРЕЗИСТЫ, светочувствительные материалы, применяемые в фотолитографии для формирования рельефного покрытия заданной конфигурации и защиты нижележащей поверхности от воздействия травителей.

Ф. обычно представляют собой композиции из светочувствительных органических веществв, пленкообразователей (феноло-формальдегидные и др. смолы), органических растворителей и спец. добавок. Характеризуют Ф. светочувствительностью, контрастностью, разрешающей способностью и теплостойкостью. Область спектральной чувствительности Ф. определяется наличием в светочувствительных. органических веществах хромофорных групп способных к фотохимическим превращениям, и областью пропускания пленкообразователя.

По спектральной чувствительности различают Ф. для видимой области спектра, ближнего ( 320-450 нм) и дальнего (180-320 нм) УФ излучения, по характеру взаимодействия с излучением делят на позитивные и негативные. Ф. могут быть жидкими, сухими и пленочными. Жидкие Ф. содержат 60-90% по массе орг. растворителя, пленочные - менее 20%, сухие обычно состоят только из светочувствит. вещества. Жидкие Ф. наносят на подложку (см. Планарная технология)центрифугированием, напылением или накаткой валиком, сухие -напылением и возгонкой, пленочные - накаткой. Последние имеют вид пленки, защищенной с двух сторон тонким слоем светопроницаемого полимера, напр. полиэтилена. В зависимости от метода нанесения формируют слои толщиной 0,1-10 нм; наиб. тонкие слои (0,3-3,0 мкм) формируют из жидких Ф. методом центрифугирования или из сухих Ф. методом возгонки.

При экспонировании в слое Ф. образуется скрытое изображение. При этом светочувствительных компонент претерпевает ряд фотохимических превращений, напр. подвергается фотополимеризации или структурированию либо разлагается с выделением газообразных продуктов; в зависимости от этого светочувствительное вещество закрепляется (сшивается) на экспонированных участках и не удаляется при дальнейшем проявлении (визуализации) под действием органических или водно-щелочных растворителей или плазмы (негативные Ф.) либо переходит в растворимое состояние и легко удаляется с экспонированных участков при проявлении (позитивные Ф.).

Из позитивных фоторезистов наиболее распространены композиции, содержащие в качестве светочувствительного компонента сульфо-эфиры о-нафгохинондиазида (5-40% по массе), а в качестве пленкообразователя - новолачные смолы (до 50%). При экспонировании сульфоэфир переходит в сульфопроизводное инденкарбоновой кислоты и при проявлении под действием водно-щелочного растворителя удаляется с экспонированных участков поверхности вместе со смолой:

Среди негативных фоторезистов наиб. распространены композиции на основе циклоолефиновых каучуков с диазидами в качестве сшивающих агентов, а также сенсибилизированные поливиниловый спирт, поливинилциннамат и др. Схема превращения негативного Ф. на основе каучука и диазида представлена реакцией:

Сшитый полимер закрепляется на подложке, а рельефное изображение (маска) образуется в результате вымывания Ф. с неэкспонированных участков.

Для дальнего УФ излучения применяют позитивные Ф. на основе сенсибилизиров. полиметакрилатов и арилсульфоэфи-ров с фенольными смолами, а также негативные Ф. на основе композиций галогенированных полистиролов и диазидов с феноло-формальдегидными и др. смолами. Перспективны Ф., работающие на принципе хим. усиления скрытого изображения; такие Ф. в качестве светочувствительных компонента содержат ониевые соли (напр., Ph3S+X- и Ph2I+X-, где X = AsF6, SbF6, PF6, CF3SO3), катализирующие темновые реакции др. компонентов Ф. (напр., эфиров нафтолов, резольных смол).

Позитивные Ф. чувствительны к экспозиции 10-250 мДж/см2, имеют разрешающую способность 0,1-2,0 мкм, контрастность 1,5-5, теплостойкость 120-140 0C; негативные Ф., как правило, более чувствительны, но имеют худшую разрешающую способность.

Для получения защитных покрытий заданной конфигурации помимо Ф. используют материалы, чувствительные к воздействию пучка электронов с энергией 5-50 кэВ (элект-ронорезисты), рентгеновского излучения с0,2-0,5 нм (рент-генорезисты) или ионов легких элементов (напр., H+, Не+, O+, Ar+) с энергией более 50 кэВ (ионорезисты). В качестве наиболее вaжныx позитивных электроно-, рентгено- и ионорезистов применяют композиции на основе производных полиметакрилатов (напр., галоген-, циано- и амидозамещенных), поли-алкиленкетонов и полиолефинсульфонов, в качестве негативных - гомо- и сополимеры производных метакрилата, бутадиена, изопрена, стирола, кремнийорг. соединений и др.

Дополнительная литература по лекции.

1. Валиев К.А., Раков А.А., Физические основы субмикронной литографии в микроэлектронике, M., 1984; Светочувствительные полимерные материалы, под ред. А.В. Ельцова, Л., 1985. Г.К. Селиванов.

2. З.Ю. Готра. Технология Микроэлектронных устройств. Справочник, М.: Радио и связь, 1991, 528 с.

3.А.И. Курносов, В.В. Юдин. Технология производства полупроводниковых проборов и интегральных микросхем.М.: Высшая школа, 1986, 368 с.

4. M.У., Микролитография, пер. с англ., M., 1990.


 

А также другие работы, которые могут Вас заинтересовать

80187. Узкополосные и широкополосные сигналы 187.5 KB
  Для классических АМ и ЧМ колебаний средняя частота совпадает с несущей частотой сигнала.2 Для сигнала вида сопряженная по Гильберту функция. Исходя из этих соотношений для гармонического сигналаогибающая и частота равны соответственно: как и следовало ожидать. Если же выбрать произвольным образом среднюю частоту то даже для гармонического сигнала можно получить некую достаточно сложную огибающую не соответствующую действительности.
80188. Физические основы работы полупроводниковых приборов 202.5 KB
  Связь между токами и напряжениями в транзисторе характеризуют тремя системами параметров: это системы z у и hпараметров. При такой схеме включения для расчетов применяют hпараметры экспериментально определяемые по статическим входным базовым и выходным коллекторным вольтамперным характеристикам ВАХ транзистора ВАХ зависимость напряжения на зажимах элемента электрической цепи от тока в нем. Статические характеристики в схеме с общим эмиттером: авходная; бвыходная Входные характеристики транзистора отражают зависимость...
80189. Принципы построения радиоэлектронных систем локации и навигации 155 KB
  К радиотехническим системам обнаружения и измерения относятся также так называемые пассивные радиосистемы когда радиопередатчик в системе отсутствует а информация извлекается радиоприемным устройством из сигналов поступающих от каких либо естественных источников электромагнитных колебаний. Радиолокационные системы Радиолокация от лат. Основной целью радиолокации является установление связи между параметрами передающей приемной системы и характеристиками отраженного и рассеянного радиолокационной целью излучения с учетом их взаимного...
80190. Современные системы подвижной радиосвязи 373.5 KB
  Особенно быстрыми темпами как в мире так и у нас в России идет развитие сетей сотовой радиосвязи. По числу абонентов системы мобильной связи уже можно судить об уровне и качестве жизни в данной стране. Однако темпы роста абонентов мобильной связи в России почти 200 в год вселяют оптимизм.
80191. Явление вариантности форм родительного падежа множественного числа в современном русском языке 159.62 KB
  В данной работе при анализе языкового материала были использованы такие общенаучные способы исследования, как наблюдение и эксперимент. Основной общенаучный метод анализа – описательный. Наиболее распространенный способ научного исследования – это наблюдение. Под лингвистическим наблюдением в свою очередь понимаются правила и техника выделения из текста (или потока речи) того или иного факта и включение его в изучаемую систему.
80192. Методы анализа линейных цепей 136 KB
  Все электрические цепи состоящие из сопротивлений емкостей индуктивностей и соединительных проводов линейны. Анализ отклика линейной цепи на известное входное воздействие сводится при этом к известной в математике задаче решения линейного дифференциального уравнения nго порядка с постоянными коэффициентами. Порядок n этого уравнения в радиотехнике принято называть порядком линейной цепи системы.
80193. Нелинейные и параметрические цепи 143.5 KB
  Наиболее часто используют метод анализа нелинейных цепей основанный на линеаризации характеристик НЭ при фильтрации высших гармоник сигнала на выходе цепи. В результате первой операции в безынерционном НЭ происходит такое преобразование формы входного сигнала при котором в его спектре появляются новые гармонические составляющие. Вторую операцию осуществляет линейный фильтр выделяя нужные спектральные составляющие преобразованного входного сигнала. Кусочнолинейная аппроксимация характеристики Нелинейный резонансный усилитель мощности...
80194. Генерация сигналов. Модуляция и детектирование сигналов 138 KB
  Колебательной системой или устройством с самовозбуждением называют динамическую систему преобразующую энергию источника постоянного тока в энергию незатухающих колебаний причем основные характеристики колебаний амплитуда частота форма колебаний и т. Процесс получения переменных сигналов требуемой формы и частоты называют генерированием электрических колебаний. Автогенератор часто просто генератор устройство преобразующее энергию постоянного тока в энергию электрических колебаний требуемой частоты и формы. Автогенератор можно...
80195. Типы и основные характеристики линий связи 357.5 KB
  Типы и основные характеристики линий связи Принципы построения радиоэлектронных систем связи Любую техническую систему действие которой основано на непосредственном использовании высокочастотных электромагнитных колебаний радиодиапазона для сбора передачи извлечения обработки или хранения информации называют радиотехнической системой упрощенно радиосистемой. Линией связи называют физическую среду космическое пространство свободное пространство воздух в нейтральном или ионизированном состояниях земная поверхность морская вода...