19076

Электрические методы измерения. Классический эффект Холла

Практическая работа

Физика

Лекция 5. Электрические методы измерения. Классический эффект Холла. К электрическим методам измерения относятся измерения вольтамперных характеристик эффекта Холла вольтфарадных характеристик. Вольтамперные характеристики измеряются двухконтактным и четыре...

Русский

2013-07-11

137 KB

18 чел.

Лекция 5.

Электрические методы измерения. Классический эффект Холла.

К электрическим методам измерения относятся измерения вольт-амперных характеристик, эффекта Холла, вольтфарадных характеристик.

Вольтамперные характеристики измеряются двухконтактным и четырехконтактным методом. Четырехконтактный метод является более предпочтительный, так как в этом случае сопротивление электрических контактов не оказывает влияние на результаты измерений. Это легко видеть из рассмотрения эквивалентной схемы измерений с учетом того, что вольтметр имеет бесконечное сопротивление.

ЭФФЕКТ ХОЛЛА

Если проводник, по которому течет ток, поместить в магнитное поле, то в нем может возникнуть дополнительное электрическое поле. Это явление названо эффектом Холла, открывшего его в 1879 году

С практической точки зрения обычно представляют интерес две ситуации: первая - эффект Холла в слабом магнитном поле, вторая - в сильном магнитном поле. Понятия сильного и слабого магнитного полей можно определить следующим образом. Известно, что в однородном магнитном поле заряженная частица должна двигаться по круговой траектории радиуса r, ось которой параллельна вектору В (см. рис. 1). Однако, если длина свободного пробега электрона (или дырки) много меньше r , то поле B "не успевает" на длине значительно "закрутить" электрон. Такое поле называется слабым.

ТЕОРИЯ ЭФФЕКТА ХОЛЛА

Рассмотрим однородный изотропный полупроводник в форме параллелепипеда с концентрацией электронов n (концентрация дырок пренебрежимо мала). Через него течет электрический ток с плотностью j. Поместим наш образец в однородное магнитное поле, вектор магнитной индукции В перпендикулярен вектору j ( см. рис.1). На электроны, дрейфующие в электрическом поле Е со скоростью V будет действовать сила Лоренца FL= -e [V, B]. Поэтому дрейф электронов будет иметь составляющую не только по оси "Х", но и по оси "Z". Это приведет к накоплению электронов на нижней грани образца, а на верхней будет их "дефицит"; в результате появится электрическое поле Ez, направленное вдоль оси "Z". Дрейф электронов вдоль оси "Z" будет до тех пор, пока возникшее электрическое поле не уравновесит силу Лоренца. В этой ситуации, очевидно, имеем:
e*E
z = e < Vx >B            (1)
Так как мы рассматриваем движение электрона за время свободного пробега, то ясно, что V
x - величина переменная, и в (1) стоит средняя скорость дрейфа, определяемая средним по ансамблю электронов временем свободного пробега ( средним временем релаксации). Поскольку
j
x= - en<Vx>, то Ez= -jx*B/en            (2)

Рис.1. Направление векторов E, B, j, Vn, FL в полупроводниковом образце n-типа при измерении эффекта Холла.

Величина Е
z называется полем Холла. Таким образом, электрическое поле ( для нашей ориентации векторов) имеет компоненты Ex и Еz , следовательно полный вектор электрического поля
E = i*E
x + k*Еz
не будет совпадать по величине и направлению с первоначальным, (когда В = 0) между ними будет угол
H , получивший название "угол Холла". Для тангенса этого угла можно записать:
tg
H = Еz / Ex            (4)
или
tg
H = - *B / (e*n) = - n *B

На практике удобнее измерять не напряженность электрического поля, а соответствующую разность потенциалов (между верхней и нижней гранями на рис.1), которая называется эдс Холла:
U
H = Ez*d = - jx*B*d / (e*n )            (5)
Если выразить полный ток через плотность тока
I = j
x*a*d , то UH = - I*B / (e*n*a ) = RH*I *B / a            (6) ,
где R
H = - 1/ (e*n ) - постоянная Холла.
В случае полупроводника р-типа проводимости в уравнении (1) следует изменить знак носителей заряда с "-е" на "+е". Тогда будем иметь:
Е
z = jx*B / (e*p) = jx*RH*B ,
tg
H = B / (e*p) = p* B ,            (7)
U
H = I*B / (e*p *a ) = RH*I*B / a ,
где р - концентрация дырок,
p - их подвижность, RH = 1/ (e*p ) - постоянная Холла для дырочного полупроводника. Сопоставляя (6) и (7), можно видеть, что по знаку эдс Холла можно определить в эксперименте тип носителей заряда, а по величине RH - их концентрацию. Кроме того, если возможно измерение и проводимости, и постоянной Холла, то по ним определяют подвижность носителей:

n(p) = *RH            (8)
Теперь рассмотрим ситуацию, когда в полупроводнике есть и электроны, и дырки. Запишем общий вид уравнений движения для электронов и дырок в электрическом и магнитном полях:
m*dV
n/dt = -e*E - e [Vn,B] - для электронов            (9)
m*dV
p/dt = -e*E - e [Vn,B] - для дырок

Проинтегрировав уравнения (9), и используя соотношение для подвижности
n =e < >/mn , получим:
V
n = - n *E -( n ) 2 [E , B]            (10),
V
p = - p *E - (p ) 2 [E , B]

Домножив первое уравнение на "en", а второе на "ep", получим уравнения для электронного и дырочного токов:
j
n = en* n *E - en*(n) ) 2 [E , B]            (11),
j
p = ep* p *E - ep*(p ) 2 [E , B]

Таким образом, полный ток:
j = e*(n*n + p*p )*E + e (p*(p ) 2 - n*(n) ) 2 ) [E , B]            (12),

или в скалярной форме:
j
x= e*(n*n + p*p )*Ex + e (p*(p ) 2 - n*(n) ) 2 ) [Ez , By] = j           (13),
j
z= e*(n*n + p*p )*Ez + e (p*(p ) 2 - n*(n) ) 2 ) [Ex , By] = 0

Поскольку магнитное поле слабое, то второе слагаемое в первом уравнении системы (13) много меньше первого. С учетом этого, решив систему (13) относительно Ez , получим:
E
z = RH*j*B                                                                          (14.1),
R
H = (1/e)*(p*(p ) 2 - n*(n ) 2 ) / (n* n + p* p )2            (14.2).

Из (14.2) видно, что при n>>p R
H = 1/ (en), а при p>>n RH = 1/ (ep).
В случае собственного полупроводника, где n = p = n
i ,
R
H = (1/e*ni)*((p - n ) / (p +n )) = (1/e*ni)*(1 -b) / (1+ b)           (15),

где b =
n / p . Согласно (15) RH < 0 при b > 1 (т.е. n> p) и RH > 0 при b < 1 (т.е. n< p).

Выше мы полагали, что все носители заряда имеют одно и то же время релаксации, иными словами - мы считали вероятность рассеяния независящей от скорости движения. При строгом рассмотрении необходимо учитывать распределение носителей по скоростям; следствием этого будет зависимость времени релаксации электронов (дырок) от их кинетической энергии. Описание кинетических явлений в ансамбле частиц при учете их распределения по энергии обычно выполняют с помощью кинетического уравнения Больцмана. Следствием рассмотрения эффекта Холла с помощью этого уравнения будет появление множителя r
r = <
2> / <>2, в выражении для постоянной Холла:

R
H = - r / (e*n ) - для электронов,
R
H = r / (e*p ) - для дырок, (16)
R
H = (r/e)*(p*(p ) 2 - n*(n ) 2 ) / (n* n + p* p )2 - для биполярной проводимости.

Здесь <
2>- среднее время релаксации, <>2- средний квадрат времени релаксации.
Соответственно, все полученные выше формулы, где есть множители 1/ (e*n ) или 1/ (e*p ), верны с точностью до множителя r; в частности, для подвижности:
nH = r / (e*n ) = r*n             (17)
pH = r / (e*p ) = r*p

Поэтому подвижность, определяемую с помощью эффекта Холла, называют холловской, в отличие от истинной (дрейфовой). Множитель r получил название фактора Холла.
Поскольку r определяется временем релаксации , то его величина будет зависеть от механизмов рассеяния носителей заряда. Подсчитано, что при рассеянии на акустических колебаниях кристаллической решетки
r = 3* / 8 = 1.18, а при рассеянии на примесных ионах r = 315* /512 = 1.93.
При низких температурах (для Ge T<250 K, для Si T<100 K) обычно доминирует рассеяние носителей на ионах примесей, а при высоких температурах (для Ge и Si - в том числе и при комнатной температуре) преобладает рассеяние на колебаниях решетки.
Как отмечалось выше, полученные нами результаты справедливы для случая "слабого" магнитного поля. Поскольку = <>/<V> , то соотношение между длиной свободного пробега <> носителя заряда и радиусом его круговой орбиты в магнитном поле можно заменить на следующее:
<< T=2* /
c - для слабого поля,            (18)
>> T=2* /
c - для сильного поля,

где T-период вращения частицы,
c - циклотронная частота (частота вращения носителя заряда по круговой траектории в магнитном поле с индукцией В). Известно, что c = e*B / m. Подставив c в (18), получим
*
c / 2* = *B / 2*<< 1 - для слабого поля,
*
c / 2* = *B / 2*>> 1 - для сильного поля

Приведенное определение "сильного" и "слабого" полей является классическим. Здесь не учитывается изменение энергетического спектра электрона в магнитном поле. Рассматривая движение носителей заряда в классически сильном магнитном поле, можно показать, что в этом случае в кинетическом уравнении Больцмана вместо времени релаксации появляется "эффективное" время релаксации:
эф = / (1 + ()2 * ( c) 2)           (19).

Отсюда видно, что в слабом поле
эф~, а в классически сильном поле эф эф<<и в первом приближении перестает зависеть от скорости движения носителя заряда, т.е. в классически сильном поле r = 1. Таким образом, для постоянной Холла и холловской подвижности получается:
R
H = - 1 / (e*n ) , RH = 1 / (e*p )
H =
Измерения эффекта Холла в классически сильных магнитных полях дают возможность определять фактор r; для этого берут отношение постоянных Холла R
H , полученные для одного и того же образца в слабом и сильном полях.
ИЗМЕРЕНИЯ ЭФФЕКТА ХОЛЛА И ПРОВОДИМОСТИ В ОБРАЗЦАХ ПРЯМОУГОЛЬНОЙ ФОРМЫ
Простейший способ одновременного измерения эффекта Холла и проводимости можно реализовать на полупроводниковых образцах прямоугольной формы. В этом случае контакты располагают как на рис.2. Контакты 1 и 2 служат для пропускания тока через образец, 3 и 4 - для измерения эдс Холла, 4 и 5 - для измерения проводимости (подобно тому, как это делается в четырехзондовом методе).

Рис.2. Размещение зондов на образце прямоугольной
формы для измерений проводимости и эдс Холла.

Для определения проводимости необходимо измерить величину тока, проходящего через образец, и падение напряжения U45 между зондами 4 и 5. Тогда
= (d
45 / S) (I / U45)                      (21),

где d
45 - расстояние между контактами 4 и 5, S - площадь сечения образца.
При измерении эдс Холла необходимо учитывать вклады паразитных эдс, возникающих вследствие побочных гальваномагнитных и термомагнитных эффектов, а также из-за неэквипотенциальности контактов 3 и 4 при нулевом магнитном поле. Напряжение между зондами 3 и 4 имеет следующие составляющие:
U
34 = UH + UN + UE + URL + UIR                     (22),

где U
H - эдс Холла, UN - эдс Нернста, UE и URL - термоэдс, возникающие благодаря эффектам Эттинсгаузена и Риги-Ледюка, UIR - разность потенциалов, обусловленная неэквипотенциальностью контактов 3 и 4. Знак каждого из этих вкладов зависит от направления тока и магнитного поля. Для разных комбинаций направлений тока и поля будем иметь:
+B, +I: U
34++ = UH + UN + UE + URL + UIR
+B, -I: U
34+- = -UH + UN -UE + URL -UIR                         (23)
-B, +I: U
34-+ = -UH - UN - UE - URL + UIR
-B, -I: U
34-- = UH - UN + UE - URL - UIR

Из уравнения (23) получаем:
U
H + UE = (U34++ - U34+- - U34-+ + U34-- ) / 4                (24)

Обычно U
H >> UE , поэтому UE можно пренебречь. Таким образом, для исключения побочных эффектов при каждом значении магнитного поля и тока нужно произвести измерения при 4 различных комбинациях направлений тока и магнитного поля. Для определения UH полученные значения нужно брать с учетом знака. Теперь для постоянной Холла:
R
H = a*UH / (I*B)                (25),

а для холловской подвижности:
H = RH * = [a*d45 / (B*S)] [UH / (U45)]               (26),

здесь а - толщина образца.
ИЗМЕРЕНИЯ В ОБРАЗЦАХ ПРОИЗВОЛЬНОЙ ФОРМЫ (МЕТОД ВАН-ДЕР-ПАУ)
Ван-дер-Пау решил задачу об измерении электрического удельного сопротивления и постоянной Холла для полупроводниковых пластин любой геометрической формы. Предложенный им метод оказался прост в реализации и потому получил широкое распространение. Суть его заключается в следующем. На периферии плоскопараллельной пластины толщиной d (к ее торцам) закрепляются четыре контакта (см. рис. 3 ). Через контакты 1 и 2 к образцу подводится ток I12 , а между контактами 3 и 4 будет падение напряжения U34 . Отношение этих величин будет иметь размерность электрического сопротивления:
R
12,34= U34 / I 12              (27),

Теперь изменим схему измерений: пропустим ток между контактами 2 и 3 , а напряжение измерим между контактами 1 и 4. В этой ситуации аналогичная величина с размерностью сопротивления равна:
R
23,14= U14 / I 23              (28),


Рис.3. Размещение зондов на образце произвольной формы при измерениях
методом Ван-дер-Пау проводимости (левый рисунок) и эдс Холла (правый рисунок).

Ван-дер-Пау показал, что удельное сопротивление образца определяется соотношением:
exp (- *d*R
12,34 / ) + exp (- *d*R 23,14 / ) = 1              (29),

Поскольку уравнение (29) является трансцендентным, то Ван-дер-Пау предложил ввести коэффициент f, зависящий от отношения R
12,34 / R 23,14 (см. табл.). Это позволило ему выразить в явном виде:
= ( * d / ln 2) (R
12,34 + R 23,14 )*f / 2              (30).

Значения f приведены в таблице, из которой видно, что f изменяется незначительно, в то время как отношение
R
12,34 / R 23,14 меняется на несколько порядков.

 

f

1.0

0.95

0.81

0.69

0.59

0.46

0.40

0.34

0.29

0.25

R 12,34 /

R 23,14 

1

2

5

10

20

50

100

200

500

1000


Для измерения постоянной Холла выбираются другие пары контактов (конфигурация контактов близка к скрещенной): через 1 и 3 пропускается ток I
13 , а между 2 и 4 измеряется напряжение U24 . Сопротивление, определяемое по отношению этих величин
R
13,24= U24 / I 13             (31),

изменится на величину dR
13,24 , если перпендикулярно плоскости пластины включить однородное магнитное поле B. Можно показать, что постоянная Холла в этом случае будет равна:
R
H= dR 13,24 *d / B              (32).

МОДИФИЦИРОВАННЫЙ МЕТОД ВАН-ДЕР-ПАУ (для планарного размещения зондов)
При измерении эффекта Холла методом Ван-дер-Пау в тонких полупроводниковых слоях возникают трудности с установкой зондов. В связи с этим данный метод был модифицирован так, чтобы было возможно планарное размещение контактов, т.е. на поверхности исследуемого слоя или образца.
При измерении проводимости ток I подводится через зонды 1 и 4, а разность потенциалов измеряют между зондами 2 и 3. Проводимость для этой конфигурации контактов подсчитывают по формуле:

14,23 = L* I14 / (UI23 *d)              (33),

где L - поправочный множитель, учитывающий геометрию образца. Затем геометрию измерений меняют: через зонды 1 и 2 пропускают ток, а между другой парой (3 и 4) определяют падение напряжения. Из полученных данных находят
12,34 . Истинную проводимость = 1 / находят по формуле:
= (
14,23 +   12,34) / 2            (34)


Рис.4. Размещение зондов в планарном варианте
метода Ван-дер-Пау.


При определении постоянной Холла ток I подводится через зонды 1 и 3 , между другой парой контактов (2 и 4) измеряют падение напряжения. Для этой конфигурации контактов постоянная Холла равна:
R
H 13,24 =dU24 */(B*I13*k)            (35),

где dU24 - изменение напряжения между зондами 2 и 4 после включения магнитного поля, k - поправочный множитель, учитывающий геометрию образца и конфигурацию зондов. Затем повторяют измерения, изменив назначение контактов: через 2 и 4 подают ток I24 , а с 1 и 3 снимают разность напряжений dU13 . По этим данным определяют
R
H 24,13 . Истинная постоянная Холла находится как среднее арифметическое R H 13,24 и R H 24,13 :
R
H = (R H 13,24 +R H 24,13 ) / 2            (36).

При электрических измерениях на полупроводниковых образцах обычно сталкиваются с проблемой учета контактной разности потенциалов и других паразитных эдс. Точный расчет поправок возможен здесь лишь для простейших случаев. Для исключения (или значительного уменьшения) вклада контактных потенциалов в измеряемые напряжения до недавнего времени применяли компенсационные методы измерений (к измерительным зондам подключался внешний источник напряжения так, чтобы полностью компенсировать измеряемую разность потенциалов). Последнее время для этих целей используют электрометрические цифровые вольтметры (входное сопротивление R
вх 109 Ом*см). В обоих случаях создаются условия, когда можно пренебречь протеканием тока через зонды, между которыми измеряется напряжение, и, следовательно, пренебречь падением напряжения на контактах. Ошибки, связанные с медленно меняющимися во времени помехами, удается значительно уменьшить, если проводить измерения при разных направлениях тока. В ошибку при определении постоянной Холла дает вклад и несимметричное размещение зондов. Исключить ее можно, выполняя измерения при двух (противоположных) направлениях магнитного поля. Таким образом, для точного определения проводимости и постоянной Холла при каждом значении тока необходимо сделать четыре измерения для и восемь для RH , а полученные данные усреднить.


 

А также другие работы, которые могут Вас заинтересовать

16352. ИСПЫТАНИЕ АСИНХРОННОГО ДВИГАТЕЛЯ С ФАЗНЫМ РОТОРОМ 200 KB
  ИСПЫТАНИЕ АСИНХРОННОГО ДВИГАТЕЛЯ С ФАЗНЫМ РОТОРОМ ЦЕЛЬ РАБОТЫ 1.1. Ознакомиться на разобранном образце по учебнику и конспекту лекций с конструкцией асинхронного двигателя с фазным ротором. 1.2. Получить практические навыки пуска асинхронного двигателя с ...
16353. РАБОТА СИНХРОННОГО ГЕНЕРАТОРА НА ИНДИВИДУАЛЬНУЮ НАГРУЗКУ 280 KB
  РАБОТА СИНХРОННОГО ГЕНЕРАТОРА НА ИНДИВИДУАЛЬНУЮ НАГРУЗКУ ЦЕЛЬ РАБОТЫ Ознакомиться по учебнику и конспекту лекций с конструкцией основных видов синхронных машин. Приобрести практические навыки в исследовании синхронных машин. П...
16354. ИСПЫТАНИЕ АСИНХРОННОЙ МАШИНЫ В РЕЖИМЕ ГЕНЕРАТОРА 318 KB
  ИСПЫТАНИЕ АСИНХРОННОЙ МАШИНЫ В РЕЖИМЕ ГЕНЕРАТОРА. ЦЕЛЬ РАБОТЫ. Ознакомиться на разобранном образце по учебнику и конспекту лекций с конструкцией асинхронной машины. Получить практические навыки перевода асинхронной машины из двигател...
16355. Исследование параметров микроклимата 404 KB
  Исследование параметров микроклимата Методические указания к выполнению лабораторной работы по курсу Безопасность жизнедеятельности для студентов очного и заочного обучения всех направлений и специальностей Безопасность жизнедеятельности. Методические указ
16356. Контроль состояния изоляции проводов 99.5 KB
  Контроль состояния изоляции проводов Методические указания к выполнению лабораторной работы по курсу Безопасность жизнедеятельности для студентов очного и заочного обучения всех направлений и специальностей Безопасность жизнедеятельности. Методические ука...
16357. Определение электрического сопротивления тела человека 644 KB
  Определение электрического сопротивления тела человека Методические указания к выполнению лабораторной работы по курсу Безопасность жизнедеятельности для студентов очного и заочного обучения всех направлений и специальностей Безопасность жизнедеятельности. ...
16358. Измерение параметров электромагнитных полей на рабочих местах, оборудованных ПЭВМ 290.5 KB
  Измерение параметров электромагнитных полей на рабочих местах оборудованных ПЭВМ Методические указания к выполнению лабораторной работы по курсу Безопасность жизнедеятельности для студентов очного и заочного обучения всех направлений и специальностей Безопа...
16359. Исследование эффективности и качества искусственного освещения 266 KB
  Исследование эффективности и качества искусственного освещения Методические указания к выполнению лабораторной работы по курсу Безопасность жизнедеятельности для студентов очного и заочного обучения всех направлений и специальностей Безопасность жизнедеяте
16360. РАСПРОСТРАНЕНИЕ ЭЛЕКТРОМАГНИТНЫХ ВОЛН В ОДНОРОДНЫХ ИЗОТРОПНЫХ СРЕДАХ 267 KB
  Лабораторная работа №1 РАСПРОСТРАНЕНИЕ ЭЛЕКТРОМАГНИТНЫХ ВОЛН В ОДНОРОДНЫХ ИЗОТРОПНЫХ СРЕДАХ ЦЕЛЬ РАБОТЫ: Определение электромагнитных характеристик реальных сред. КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ Волновым процессом называется перемещение в простран...