19083

Принципы сканирующей зондовой микроскопии. Сканирующий туннельный микроскоп. Атомно-силовой микроскоп

Практическая работа

Физика

ТЕМА 1213 Принципы сканирующей зондовой микроскопии. Сканирующий туннельный микроскоп Атомносиловой микроскоп Сравнительная характеристика различных методов микроскопического исследования поверхности твердых тел Мет...

Русский

2013-07-11

440 KB

21 чел.

ТЕМА 12-13 

Принципы сканирующей зондовой микроскопии.

Сканирующий туннельный микроскоп

Атомно-силовой микроскоп

Сравнительная характеристика различных методов микроскопического исследования поверхности твердых тел

Метод

Увеличение

Рабочая среда

Размерность изображения

Воздействие на образец

Оптическая микроскопия

103

воздух

жидкость

2D

неразрушающий

Лазерное сканирование

104

воздух

жидкость

2D

неразрушающий

Сканирующий электронный микроскоп

106

вакуум

2D

разрушающий

Автоэлектронный и автоионный микроскопы

107-108

вакуум

2D

разрушающий

Просвечивающий электронный микроскоп

107-108

вакуум

2D

разрушающий

Ионный микроскоп

109

вакуум

2D

разрушающий

Сканирующий зондовый микроскоп

109

вакуум

воздух жидкость

3D

неразрушающий

В 1981 г. Герхард Биннинг и Хайнрих Рёрер из лаборатории IBM в Цюрихе представили миру сканирующий туннельный микроскоп (СТМ). С его помощью были получены изображения поверхности кремния атомарного разрешения. В 1986 году за это изобретение была присуждена нобелевская премия.

Развивая идеи, заложенные в СТМ, в 1986 г. Биннинг, Калвин Куэйт и Кристофер Гербер создают атомно-силовой микроскоп (АСМ), благодаря которому были преодолены присущие СТМ ограничения.

Сканирующие зондовые микроскопы (СЗМ) – таково общее название такого типа устройств – используются сегодня в широком диапазоне дисциплин, включающем как фундаментальную науку о поверхности, так и традиционный анализ шероховатости поверхности. Не менее эффективно применение СЗМ-технологий для построения трехмерных изображений – от атомов до микронных образований на поверхности биологических объектов.

Сканирующий зондовый микроскоп – это инструмент с множеством возможностей. Это и профилометр с беспрецедентным разрешением, СЗМ может измерять такие физические свойства, как, например, проводимость поверхности, распределение статических зарядов, магнитных полей и модуля упругости, свойства смазочных пленок и др.

Изображения, получаемые с помощью СЗМ, относятся к разряду создаваемыми микроскопическими методами образами, которые достаточно легко интерпретировать. В случае электронного или оптического микроскопа принцип получения изображения базируется на сложных электромагнитных дифракционных эффектах. Поэтому иногда могут возникнуть трудности при определении того, является ли некоторый элемент микрорельефа впадиной или выступом. Напротив, СЗМ регистрирует достаточно точно трехмерные параметры. На получаемых при помощи оптических или электронных микроскопов изображения, например, плоского образца, состоящего из чередующихся отражающих и поглощающих участков, могут возникать искусственные изменения контрастности. Атомно-силовой микроскоп, в свою очередь, практически безразличен к изменениям оптических или электронных свойств и дает информацию об истинной топографии поверхности.

Все СЗМ содержат компоненты, схематично представленные на рис.1. В конструкции каждого сканирующего зондового микроскопа есть свои отличия. В комплекте прибора могут также присутствовать дополнительные устройства, позволяющие модифицировать базовый блок для решения специальных задач. Однако, общая структура СЗМ остается более или менее одинаковой. В состав СЗМ-комплекса входит компьютер, который управляет работой электромеханической части микроскопа, принимает и записывает регистрируемые зондом данные, производит на их основе построение СЗМ-изображения и, кроме того, позволяет обрабатывать полученное изображение, без чего подчас бывает трудно или вообще невозможно проанализировать наблюдаемую картину.

САМ и СТМ являются на сегодня наиболее распространенными в практике СЗМ-технологиями. Тем не менее, большинство промышленно выпускаемых устройств обычно разработаны таким образом, что добавления к прибору новых функций и возможностей достаточно переоснастить его основной блок, заменив отдельные небольшие части. Иногда единственно необходимым изменением является переключение из одного режима в другой непосредственно в обслуживающей компьютерной программе.

Принцип работы СТМ.

Рассмотрим принцип работы СТМ со схемой триплета. Эта схема состоит из трех брусочков, сделанных из пьезоэлементов, каждый из которых был направлен по одной из трех осей и обеспечивал перемещение в одном из направлений.

В СТМ прецизионные двигатели приближают предельно острую металлическую иглу к проводящей поверхности образца (см.рис.2). Между иглой и поверхностью приложено напряжение от десятых долей до единиц вольта. На расстоянии порядка 10 А между атомами иглы и образца начинается протекание туннельного тока.

Примерная зависимость величины туннельного тока I от расстояния z, при приложенном напряжении V выражается известной формулой:

IkV exp(-cz)

где с, к – постоянные величины слабо зависящие от материала образца и иглы, причем с2,1 1010 м-1. Приведенная выше формула имеет приближенный характер, т.к. существует много факторов, влияющих на величину туннельного тока: поток электронов, форма иглы, толщина пленки воды на поверхности, поверхностные состояния и т.д. Зависимость величины туннельного тока от расстояния между иглой и образцом очень сильная – при напряжении между иглой и образцом около 1 В и изменении расстояния от 15 до 8 А (примернов 2 раза) ток изменяется от единиц пикоампер до десятков наноампер ( 100 раз).

Туннельный ток с помощью предусилителя и АЦП регистрируется компьютером, который, управляя прецизионными двигателями подачи иглы, останавливает ее на такой высоте над образцом, на которой туннельный ток имеет заданную оператором величину. Рабочие значения тока обычно выбираются в пределах нескольких наноампер для металлических и полупроводниковых образцов и порядка 1-100 пикоампер для органических пленок и объектов (чтобы не вызвать разрушение структур этих образцов). После фиксации высоты зависания иглы компьютер может начать сканирование заданной оператором поверхности образца. Шаг сканирования может доходить до десятых долей ангстрема.

Для устранения опасности контакта иглы с поверхностью исследуемого образца или ее ухода из области существования туннельного тока ( примерно 10 А) используют систему обратной связи. Эта система постоянно регистрирует туннельный ток и делает такие поправки высоты зависания иглы (с помощью пьезодвигателя подачи игды), чтобы величина туннельного тока, заданная оператором, оставалась постоянной в каждой точке сканирования. Игла при этом остается на одном и том же расстоянии от поверхности, и коррекция высоты иглы прямо отражает рельеф поверхности образца.

По окончании сканирования в компьютере формируется массив высот поверхности для каждого участка сканирования, по которому строится изображение исследуемой поверхности.

В 1986 году было предложено использовать пьезокерамические трубки со специальной конфигурацией электродов для изготовления сканеров (рис.3).Они позволяют создать центросимметричные конструкции проборов и значительно снизить величину температурного дрейфа. с использованием трубчатых конструкций можно создать сканеры с полями сканирования до 100 мкм при напряжениях на электродах 300 В при длине сканера порядка 80 мм. При этом поперечные резонансные частоты таких сканеров не более 1кГц, что допускает получать и атомарные разрешения.

В сканере данной конструкции возможно перемещение средней точки незакрепленного сканера по сфере радиусом порядка RэффL/2, где L – длина пьезотрубки. При малых размерах скана это почти плоскость. Перемещение осуществляется подачей напряжения в разных плоскостях XYZ пьезотрубки. При этом один сектор трубки сжимается, а другой расширяется, и происходит смещение в плоскости. Перемещение по нормали к поверхности осуществляется подачей напряжения на внутренний электрод относительно всех четырех внешних.

Следует отметить, что поверхность исследуемого образца должна быть проводящей, что естественно, ограничивает сферу применения СТМ. В некоторых случаях для усиления сигнала поверхность образца покрывают тонкими пленками хорошо проводящих металлов, например, золота. Также надо иметь ввиду, что сигнал СТМ отражает распределение электронных плотностей, а не реального рельефа, что может усложнять интерпретацию результатов.

Атомно-силовая микроскопия

Как уже было отмечено ранее, одной из разновидностей СЗМ является атомно-силовой микроскоп (АСМ). Его принцип действия также основан на взаимодействии тонкого острия с поверхностью. Острие изготавливается из кусочка алмаза или кремния и крепится на специальной консоли – кантиливере. Подводом кантиливера к образцу управляет электронное устройство. При приближении иглы к образцу на расстояние в единицы ангстрем на иглу действует Ван-дер-Ваальсовская межатомная сила отталкивания, которая изгибает консоль. Перемещаясь над поверхностью, консоль, изгибаясь, отслеживает рельеф поверхности. Угол изгиба консоли несет информацию о рельефе исследуемой поверхности. Одним из способов регистрации угла изгиба консоли является применение луча лазера, который отражается от обратной кантилеверу стороны консоли и падает на фотодиодный секторный датчик, чувствительный к смещению пятна лазерного луча. Система обратной связи отслеживает изменение сигнала на фотодетекторе и управляет пьезоэлектрическим преобразователем, поддерживая высоту, на которой находится игла, постоянной. По информации, полученной с фотодетектора выстраивается массив данных, по которому восстанавливается изображение поверхности исследуемого образца.

Режимы работы СЗМ

Режим работы СЗМ, при котором фиксируется какой-либо тип физической величины между образцом и зондом, называется модой. Такими величинами могут быть:

  •  электрические токи и их производные;
  •  силы и их производные;
  •  электрические потенциалы;
  •  температура и ее изменение;
  •  излучение и ее спектральный состав.

Измерения этих величин можно производить в различных режимах и различными способами. Условно выделяют контактные, полу контактные и бесконтактные моды сканирования.

К контактным модам относятся режимы сканирования, в которых поверхностные атомы зонда постоянно находятся в потенциале сил отталкивания, обусловленного перекрытием электронных оболочек поверхностных атомов образца и зонда:

  •  контактная АСМ топография – кантилевер скользит над поверхностью, повторяя ее профиль;
  •  СТМ топография – измеряется профиль поверхности при поддержании постоянного тока между образцом и зондом посредством цепи обратной связи;
  •  литография – используя зонд можно механически изменять поверхность образца для создания каких-либо структур.

Полуконтактные методы, в которых кантелевер, колеблющийся на частоте в полосе резонансных колебаний, лишь в нижнем положении входит в состояние контакта, определенного выше. Амплитуда, амплитудно-фазовые характеристики или частота колебаний поддерживаются постоянными в процессе сканирования. К таким модам относится:

  •  Tapping Mode АСМ – измерение топографии путем «простукивания» поверхности с осциллирующим кантелевером;
  •  фазовое измерение – измерение фазы колебания кантилевера относительно фазы возбуждающего сигнала.

Бесконтактные моды, в которых измеряются параметры взаимодействия зонда и образца в условиях, когда электронные оболочки поверхностных атомов и образца не входят в состояния перекрытия электронных оболочек. К таким модам относятся:

  •  бесконтактная АСМ – измерение топографии образца, используя Ван-дер-Ваальсовские силы притяжения между образцом и зондом;
  •  измерение градиента распределения магнитного и электрического поля над поверхностью образца.





10


 

А также другие работы, которые могут Вас заинтересовать

25308. Потенциал действия 37.5 KB
  Потенциал действия может быть зарегистрирован двояким способом: с помощью электродов приложенных к внешней поверхности волокна внеклеточное отведение и с помощью микроэлектрода введенного внутрь протоплазмы внутриклеточное отведение. Долгое время физиологи полагали что потенциал действия представляет собой лишь результат кратковременного исчезновения той разности потенциалов которая существует в покое между наружной и внутренней сторонами мембраны. Однако точные измерения проведенные с помощью внутриклеточных микроэлектродов...
25309. Законы раздражения 44 KB
  Механизм раздражающего действия тока при всех видах стимулов в принципе одинаков однако в наиболее отчетливой форме он выявляется при использовании постоянного тока прямоугольной формы. При использовании в качестве раздражителя электрического тока порог выражается в единицах силы тока или напряжения. Существует два способа подведения электрического тока к ткани: внеклеточный и внутриклеточный. Недостаток этого метода заключается в значительном ветвлении тока: только часть его проходит через мембраны клеток часть же ответвляется в...
25310. Строение и классификация нейронов 35.5 KB
  Место отхождения аксона от тела нервной клетки называют аксонным холмиком. Дендриты это многочисленные ветвящиеся отростки функция которых состоит в восприятии импульсов приходящих от других нейронов и проведении возбуждения к телу нервной клетки. В центральной нервной системе тела нейронов сосредоточены в сером веществе больших полушарий головного мозга подкорковых образований мозжечка мозгового ствола и спинного мозга.
25311. Строение и работа синапсов 28 KB
  Они образуются концевыми разветвлениями нейрона на теле или отростках другого нейрона. В структуре синапса различают три элемента: 1пресинаптическую мембрану образованную утолщением мембраны конечной веточки аксона; 2синаптическую щель между нейронами; 3постсинаптическую мембрану утолщение прилегающей поверхности следующего нейрона. В большинстве случаев передача влияния одного нейрона на другой осуществляется химическим путем.Для возбуждения нейрона необходимо чтобы ВПСП достиг порогового уровня.
25312. Рефлекс. Рефлекторный процесс 63.5 KB
  У животных обладающих нервной системой развился особый тип реакций рефлексы. Рефлексы это реакции организма происходящие при обязательном участии нервной системы в ответ на раздражение воспринимающих нервных окончаний рецепторов. Павлова делят на две большие группы: на рефлексы безусловные и условные. Безусловные рефлексы это врожденные наследственно передающиеся реакции организма.
25313. Свойства нервных центров 39 KB
  Проведение волны возбуждения от одного нейрона к другому через синапс происходит в большинстве нервных клеток химическим путем с помощью медиатора а медиатор содержится лишь в пресинаптической части синапса и отсутствует в постсинаптической мембране. В связи с этим поток нервных импульсов в рефлекторной дуге имеет определенное направление от афферентных нейронов к вставочным и затем к эфферентным мотонейронам или вегетативным нейронам. Суммация возбуждения В ответ на одиночную афферентную волну идущую от рецепторов к нейронам в...
25314. Торможение в центральной нервной системе 28.5 KB
  Сеченовым опыт: у лягушки делали разрез головного мозга на уровне зрительных бугров и удаляли большие полушария после этого измеряли время рефлекса отдергивания задних лапок при погружении их в раствор серной кислоты.раздражение на эту область мозга то время рефлекса резко удлиняется. На основании этого он пришел к заключению что в таламической области мозга у лягушки существуют нервные центры оказывающие тормозяшие влияния на спинномозговые рефлексы. мозга наряду с возбуждающими нейронами существуют и тормозящие аксоны кот.
25315. Строение мышечного волокна 32 KB
  В состав волокна входят его оболочка сарколемма жидкое содержимое саркоплазма ядро митохондрии рибосомы сократительные элементы миофибриллы а также замкнутая система продольных трубочек и цистерн расположенных вдоль миофибрилл и содержащих ионы Са2 саркоплазматический ретикулум. Поверхностная мембрана клетки через равные промежутки образует поперечные трубочки входящие внутрь мышечного волокна по которым внутрь клетки проникает потенциал действия при ее возбуждении. Миофибриллы тонкие волокна содержащие 2 вида...
25316. Физиология спинного мозга 30 KB
  В составе серого вещества спинного мозга человека насчитывают около 13. Из них основную массу 97 представляют промежуточные клетки вставочные или интернейроны которые обеспечивают сложные процессы координации внутри спинного мозга. Среди мотонейронов спинного мозга выделяют крупные альфамотонейроны имелкие гаммамотонейроны.