19089

Выбор шага дискретизации с использованием интерполирующих полиномов Лагранжа

Практическая работа

Физика

Лекция № 3. Выбор шага дискретизации с использованием интерполирующих полиномов Лагранжа. При дискретизации реального сигнала описываемого непрерывной функцией имеющей ограниченную производную в качестве аппроксимирующей воспроизводящей функции может ис

Русский

2013-07-11

181 KB

36 чел.

Лекция № 3.

Выбор шага дискретизации с использованием интерполирующих полиномов Лагранжа.

При дискретизации реального сигнала, описываемого непрерывной функцией , имеющей   ограниченную производную, в качестве аппроксимирующей (воспроизводящей) функции может использоваться степенной многочлен степени:

                                        (3.1)

В зависимости от выбранного способа восстановления степенной полином может быть интерполирующим или экстраполирующим. Если базисные функции выбраны так, что значения аппроксимирующего полинома совпадают со значениями выборок в моменты их отсчета, то такой полином называют интерполирующим. Если аппроксимация предусматривает восстановление исследуемой функции только по предыдущим отсчетам, то такой полином называют экстраполирующим.

Погрешность дискретизации (восстановления) функции полиномом  на каждом участке аппроксимации определяется остаточным членом  :

.                                                                  (3.2)

Задача обеспечения минимальной погрешности при восстановлении сигнала на практике не ставится. Обычно задается допустимое значение этой погрешности и по нему определяется соответствующий шаг дискретизации.

Рассмотрим задачу точечной интерполяции, позволяющую выбрать шаг дискретизации сигнала (или частоту дискретизации) с помощью полиномов Лагранжа и критерия наибольшего отклонения.

Математическая формулировка задачи точечной интерполяции: требуется определить на заданном интервале времени    шаг дискретизации , при котором текущая погрешность восстановления не превысит допустимого значения , если функция задана  узлом, т.е. совокупностью значений   

Другими словами, требуется построить аппроксимирующий полином так, чтобы в узлах аппроксимации погрешность восстановления отсутствовала, а между узлами не превышала заданного значения.

В общем случае решение этой задачи сводится к решению системы уравнений:

                                                      (3.3)

Решение этой системы можно представить в виде интерполяционного полинома Лагранжа, имеющего вид:

                                             (3.4)

При равномерной дискретизации шаг дискретизации  и, введя безразмерный параметр , можно записать интерполирующий полином Лагранжа в виде:

                                                           (3.5)

Значение остаточного члена , определяющего погрешность дискретизации (восстановления), имеет вид:

                                                                  (3.6)

где максимальное во всем интервале преобразования значение модуля  производной сигнала . Для равноотстоящих узлов (равномерная дискретизация) остаточный член  имеет вид:

 .                                               (3.7)

Последнее выражение позволяет определить шаг дискретизации сигнала при заданной допустимой погрешности восстановления  (см. 3.2). При этом следует иметь в виду, что выбор более высокой степени аппроксимирующего полинома при заданной погрешности обеспечивает меньшее число отсчетов, однако при этом существенно возрастает сложность технической реализации метода. Поэтому обычно ограничиваются многочленами нулевой (ступенчатая аппроксимация), первой (линейная аппроксимация) и второй степеней (параболическая аппроксимация).

Интерполяция полиномами нулевой степени

Значение восстанавливающей функции  в любой момент времени  на каждом том интервале    принимается равным отсчету  . Соотношение (3.7) позволяет получить выражение для остаточного члена:

                                                                           (3.8)

Максимальное значение погрешности достигается при .  Отсюда получаем, что шаг дискретизации не должен превышать значения:

.                                                                                        (3.9)

Интерполяция полиномами первой степени

Определим шаг равномерной дискретизации с помощью интерполирующих полиномов Лагранжа первой степени вида . При восстановлении исходного сигнала  на каждом интервале времени  используются  два отсчета  и , соединяемые прямой линией. Максимальное значение для остаточного члена, записываемого для линейной аппроксимации в виде , найдем, приравняв нулю его производную, откуда допустимый шаг дискретизации равен:

.                                                                         (3.10)

Интерполяция полиномами второй степени

Интерполирующий полином второй степени при параболической аппроксимации имеет вид:  . Для восстановления исходного сигнала по дискретным значениям используют три отсчета на интервале времени. Остаточный член такого приближения записывается в виде  . Оценив его максимальное значение, определяем допустимый шаг дискретизации:

.                                                                      (3.11)

В общем случае, при использовании интерполирующих полиномов степени  формула для вычисления шага равномерной дискретизации имеет вид:

,                                                                            (3.12)

где  числовой коэффициент, зависящий от .

Оценки показывают, что при относительно больших значениях погрешности   различие в шагах дискретизации при использовании линейной и параболической аппроксимаций незначительно. Лишь при малых погрешностях  целесообразно рассматривать возможность применения степенных полиномов со степенью .

Пример. Определить частоту дискретизации и число интервалов квантования функции  на интервале значений  при использовании ступенчатой, линейной и параболической аппроксимаций. Положить .

Для оценки погрешности по формуле (3.7) необходима информация о максимальном значении модуля  производной функции . Обычно такая информация априори отсутствует. Однако для оценки этой величины можно воспользоваться неравенством Бернштейна, которое справедливо для функций, ограниченных по модулю и имеющих ограниченный спектр:

,                                                                        (3.13)

где верхняя граничная частота спектра непрерывной функции , а максимальное значение модуля этой функции. Подставляя (3.13) в (3.12), получаем еще одно соотношение для выбора шага дискретизации сигнала:

.                                                                       (3.14)

Анализ формулы (3.14) позволяет ввести приведенную погрешность восстановления сигнала  

.                                                                                      (3.15)

Учитывая, что частота дискретизации – величина, обратная  шагу дискретизации , можно получить выражения для оценки величины приведенной погрешности восстановления при различных вариантах аппроксимации в зависимости от отношения двух частот: граничной частоты  и частоты дискретизации :

для ступенчатой аппроксимации;

для линейной аппроксимации;              (3.16)

            для параболической аппроксимации.  

PAGE  1


 

А также другие работы, которые могут Вас заинтересовать

1368. Разработка программы на языке высокого уровня 130.5 KB
  Разработать программу на языке высокого уровня и блок-схему для вычисления арифметического выражения при заданных значениях исходных данных. Составить блок-схему алгоритма и программу для вычис-ления значения функции U, зависящей от нескольких аргументов, значения которых выбираются произвольно и задаются по вводу.
1369. Информационные системы в экономике. Информационные ресурсы 127.5 KB
  Экономическая информация. Информационные ресурсы. Структура автоматизированной информационной системы. Тенденции развития рынка информационных технологий. Информационные ресурсы - это совокупность данных, организованных для получения достоверной информации в самых разных областях знаний и практической деятельности. Отдельные документы и отдельные массивы документов в информационных системах.
1370. Экономике предприятия 120 KB
  Уставной капитал акционерного общества. Длительность технологического цикла партии деталей при последовательном виде движения. Коэффициент оборачиваемости. Производственная себестоимость
1371. Перечень тестовых вопросов для подготовки к государственному экзамену по дисциплине Базы данных и распределенные базы данных 127.5 KB
  Элементарные описания предметов, событий, действий, которые сохранены, классифицированы, но не организованы для передачи какого-либо специального содержания. Согласно какому из перечисленных SQL-предписаний будет выбрана запись со значением MARINA в поле Name таблицы Personal
1372. Анализ предприятия Слуцкие электрические сети 227.5 KB
  Описание структуры энергетического предприятия.Порядок организации рабочих мест и контроль над их выполнением. Организация мероприятий по технике безопасности. Технико-экономические показатели работы энергопредприятия. Мероприятия по охране окружающей среды на энергопредприятии.
1373. Влияние типов вируса папилломы человека на течение ювенильного респираторного папилломатоза 92 KB
  Организация статистического исследования. Заболеваемость ЮРП у детей. Карта сбора материала для детей, страдающих ЮРП. Распределение детей, страдающих ЮРП, по полу и методу лечения. . Статистические методы использованные для анализа материала.
1374. Вирішення економічних задач за допомого електронних таблиць 84.5 KB
  Обчислення в електронних таблицях. Моделювання математичних процесів. Моделювання розгалужених процесів. Моделювання циклічних процесів. Моделювання обчислень в економічних задачах табличного вигляду.
1375. Вычислительная техника 111 KB
  Возвращаем массив битов в место вызова функции. Сложение в двоичном коде уже преобразованных чисел. Перевод двоичного числа в десятичное представление. Количество битов в двоичном представлении числа.
1376. Конструктивное планирование жилого здания 174 KB
  В основе будущих жилых комплексов лежит идея открытого пространства. Здесь важнейшую роль играет солнечный свет, он создает настроение. За счет трансформации размеров здания и планировки (изменено соотношение глубины и ширины квартиры) свет максимально проникает во все точки ее пространства.