19092

Квантование сигналов по уровню

Практическая работа

Физика

Лекция № 5. Квантование сигналов по уровню. Постановка задачи. Процесс преобразования сигнала с непрерывным множеством значений в сигнал с дискретными значениями называют квантованием по уровню. По существу операция квантования заключается в округлении значения...

Русский

2013-07-11

326.5 KB

82 чел.

Лекция № 5.

Квантование сигналов по уровню.

Постановка задачи. Процесс преобразования сигнала с непрерывным множеством значений в сигнал с дискретными значениями называют квантованием по уровню.  По существу, операция квантования  заключается в округлении значения непрерывной величины до разрешенных значений шкалы квантования в соответствии с принятым правилом.

Обычно диапазон измеряемой величины, ограниченный значениями  и , разбивают на  равных интервалов (шагов) квантования :

.                                                                            (5.1)

Из множества мгновенных значений, принадлежащих му  шагу квантования , только одно значение  является разрешенным (й уровень квантования). Совокупность величин  образует дискретную шкалу уровней квантования. Следует иметь в виду, что при выборе  в качестве его значения принимают либо верхнюю границу интервала квантования, либо нижнюю, либо середину интервала. В результате возникает методическая погрешность квантования, носящая случайный характер и характеризуемая либо ее максимальным значением , либо среднеквадратичным отклонением  для всего диапазона изменения мгновенных значений сигнала.

С позиций минимизации наибольшей возможной ошибки квантования непрерывную шкалу мгновенных значений сигнала целесообразно разбить на  шагов квантования и уровни квантования разместить в середине каждого шага (см. рисунок).

Из рисунка, на котором представлена статическая передаточная характеристика преобразования, следует, что максимальная погрешность квантования  равна . Если уровень квантования выбрать равным верхней или нижней границе интервала   квантования, то максимальная ошибка квантования возрастет до величины .

Оценим величину среднеквадратической погрешности квантования при следующих условиях: во-первых, возможные значения измеряемого сигнала распределены равномерно, во-вторых, измеряемая величина и случайная погрешность независимы. Доказано, что при условии , закон распределения погрешности квантования не зависит от  и близок к равномерному, т.е. плотность вероятности погрешности характеризуется постоянной величиной . Тогда погрешность квантования  на м интервале может быть оценена дисперсией и соответствующим среднеквадратическим отклонением:

.                                                           (5.2)

Дисперсия полной ошибки квантования для всей непрерывной шкалы мгновенных значений сигнала может быть определена как математическое ожидание дисперсий  на отдельных шагах квантования:

                                                                   (5.3)

где величина характеризует вероятность попадания мгновенного значения сигнала в пределы данного шага. Так как   то величина дисперсии погрешности будет равна:

.                                                                                   (5.4)

Таким образом, при квантовании с постоянным шагом и размещении уровней квантования в середине шага (равномерное квантование) среднеквадратическая погрешность квантования связана с интервалом квантования соотношением:

.                                                                                               (5.5)

Шум квантования. При квантовании сигнала по уровню реализация, представляющая собой случайный процесс , заменяется ступенчатой зависимостью . Изменяющуюся во времени погрешность квантования, также представляющую собой случайный процесс, называют шумом квантования:

                                                                            (5.6)

Сохраняя ранее введенные предположения (о малости шага квантования и равномерности распределения в нем мгновенных значений сигнала) и считая случайные процессы  и  эргодическими, среднеквадратическую ошибку равномерного квантования  можно определить по реализации .

В пределах каждого шага квантования  зависимость  можно заменить прямой , где переменный угол наклона прямой. При размещении уровней квантования в середине каждого шага математическое ожидание погрешности квантования равно нулю, а ее среднеквадратическое значение определяется из дисперсии погрешности:

,                                      (5.7)

и соответствует ранее полученному значению:

.

Наряду с шумом квантования у реальных АЦП, выполняющих функцию квантования, имеются составляющие шума, обусловленные неидеальными характеристиками компонентов, т.е. инструментальные (аппаратурные) составляющие. Суммарная мощность шумов квантования , определяемая величиной дисперсии шума, равна:                                                                                   (5.8)

где  – средняя мощность дополнительных шумов, численно равная дисперсии отклонения реальной передаточной характеристики АЦП по сравнению с идеальной.

Квантование сигналов при наличии помех. В реальных условиях на квантуемый сигнал всегда воздействует помеха. Выберем интервал квантования с учетом вероятностных характеристик этой помехи и условия ее аддитивности с сигналом. Очевидно, что мгновенное значение сигнала , попадавшее ранее в й шаг квантования и сопоставлявшееся с уровнем квантования , в результате действия помехи примет значение () и может быть поставлено в соответствие другому уровню квантования . Такой исход приводит к искажению информации и вероятность его не должна превышать допустимого значения.

Обозначим через  условную вероятность сопоставления значения сигнала  уровню квантования  вместо уровня  при условии, что сигнал  принадлежит му шагу квантования. Очевидно, что при наличии помехи условная вероятность ошибочного решения >0, а <0.

Полная вероятность того, что величина () останется в пределах го шага квантования, равна:

.                                                                          (5.9)

Эту вероятность можно также найти, используя совместную плотность вероятности  двух случайных величин и :

                                                                        (5.10)

где некоторая область интегрирования, границы которой найдем, исходя из рисунка:

Рассмотрим интервал квантования, в котором границами интегрирования по  являются значения  и . Верхняя  и нижняя  границы интегрирования по  определяются из условия, что алгебраическая сумма сигнала и помехи не должна выйти за пределы го шага квантования.

Считая помеху некоррелированной с сигналом, запишем:

                                                    (5.11)

где – плотность распределения помехи. Знаменатель выражения (5.11)  для случая равномерного квантования сигнала, мгновенные значения которого в диапазоне от  до  распределены равномерно, равен

.                                                            (5.12)

Определим условную вероятность  в предположении воздействия помехи, распределенной по равномерному закону: , где – амплитуда помехи, симметричной относительно мгновенного значения сигнала. Учитывая, что результаты расчета инвариантны относительно номера интервала квантования и зависят от соотношения амплитуды помехи  и величины , найдем  при :

.                                                      (5.13)

Аналогично находим  при  и :

                                                     (5.14)

Анализ соотношений (5.13) и (5.14) показывает, что нецелесообразно   выбирать меньше , поскольку при  резко возрастает вероятность неправильного квантования сигнала.

Аналогично рассчитывают зависимости для случая помехи, распределенной по нормальному закону распределения. Сравнение результатов расчетов показывает, что для вероятности правильного квантования   воздействие помехи с нормальным законом распределения эквивалентно воздействию равномерно распределенной помехи при соотношении , где – среднеквадратическое отклонение помехи .

PAGE  1


EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  


 

А также другие работы, которые могут Вас заинтересовать

54257. Умножение и деление рациональных чисел 174.5 KB
  Цель: развивать социальную компетентность используя самооценку и взаимооценку; развивать компетентность самообразования стимулируя познавательный интерес; развивать коммуникативную компетентность организовывая работу в парах; обобщить знания учащихся об умножении и делении рациональных чисел; экономическое воспитание. Тема урока Умножение и деление рациональных чисел. Как будет называться наше АО вы узнаете по своим ответам на мои вопросы составив слово Теория первична Учитель ...
54258. Закрепление сложения и вычитания трехзначных чисел 333 KB
  Ребята сегодня у нас необычный урок математики к нам пришли гости. Какие вы второклассники Ждут вас сегодня затеи и задачи Игры шутки всё для вас Пожелаю вам удачи За работу в добрый час Ребята за ваши правильные и полные ответы я вам буду раздавать наклейки. Ребята наши гости решили поиграть с вами в прятки спрятались от вас.
54259. Переместительное свойство сложения 22.5 KB
  Материалы необходимые для урока: изображение дерева изображения листьев Ход урока: Давайте посчитаем сколько же листьев на нашем дереве Сколько листьев справа от дерева 4 Сколько листьев слева от дерева 3 Где листьев больше а где меньше 3.
54260. Видатні українські математики. Застосування різних способів розкладання многочленів на множники 619.5 KB
  1 учень: Остроградський Михайло Васильович народився у вересні 1801 року на Полтавщині. 2 учень: Походив з родини збіднілих дворян які мали глибоке козацьке коріння. 3 учень: У 8 років його віддали до гімназії у Полтаві але хлопчик жвавої та веселої вдачі звикший до роздольного життя у рідному селі особливою старанністю не відзначався. Учень: Блискуче закінчивши університет Михайло рік живе у батька а потім вирішивши присвятити себе математиці знову повертається до Харкова для вдосконалення своїх знань.
54261. Творчий підхід до вивчення математики 155.5 KB
  Школа покликана якомога раніше виявити якості творчої особистості в учнів і розвивати їх у всіх школярів зважаючи звичайно на те що діти народжуються з різними задатками творчості. Водночас більшою мірою потрібно дбати про розвиток творчої особистості у здібних та обдарованих учнів. Можна розглянути інтелектуальноеврестичні здібності особистості які включають: Здібності генерувати ідеї висувати гіпотези що характеризує інтелектуальноеврестичні властивості особистості в...
54262. Активізація пізнавальної діяльності на уроках математики 168 KB
  Знайти середню лінію. Знайти основи трапеції. Знайти основи. Знайти меншу основу трапеції якщо її периметр 54см.
54263. Множення звичайних дробів. Знаходження дробу від числа 361.5 KB
  На сьогоднішньому уроці ми продовжимо вдосконалювати ваші вміння у множенні дробів знаходженні дробу від числа. Що є добутком двох дробів Як записати мішане число у вигляді неправильного дробу Як помножити два мішаних числа Як знайти дріб від числа Як знайти відсоток від числа Вчитель: Ви добре вивчили правила вправно зібрали рюкзак знань а отже готові до...
54264. Основные особенности китайской культуры 16.64 KB
  Как и другие культуры, китайская культура самобытна и неповторима. В отличие от индийской она более рациональна, прагматична, обращена к ценностям реальной земной жизни. Вторая характерная ее черта — это исключительная...