19092

Квантование сигналов по уровню

Практическая работа

Физика

Лекция № 5. Квантование сигналов по уровню. Постановка задачи. Процесс преобразования сигнала с непрерывным множеством значений в сигнал с дискретными значениями называют квантованием по уровню. По существу операция квантования заключается в округлении значения...

Русский

2013-07-11

326.5 KB

79 чел.

Лекция № 5.

Квантование сигналов по уровню.

Постановка задачи. Процесс преобразования сигнала с непрерывным множеством значений в сигнал с дискретными значениями называют квантованием по уровню.  По существу, операция квантования  заключается в округлении значения непрерывной величины до разрешенных значений шкалы квантования в соответствии с принятым правилом.

Обычно диапазон измеряемой величины, ограниченный значениями  и , разбивают на  равных интервалов (шагов) квантования :

.                                                                            (5.1)

Из множества мгновенных значений, принадлежащих му  шагу квантования , только одно значение  является разрешенным (й уровень квантования). Совокупность величин  образует дискретную шкалу уровней квантования. Следует иметь в виду, что при выборе  в качестве его значения принимают либо верхнюю границу интервала квантования, либо нижнюю, либо середину интервала. В результате возникает методическая погрешность квантования, носящая случайный характер и характеризуемая либо ее максимальным значением , либо среднеквадратичным отклонением  для всего диапазона изменения мгновенных значений сигнала.

С позиций минимизации наибольшей возможной ошибки квантования непрерывную шкалу мгновенных значений сигнала целесообразно разбить на  шагов квантования и уровни квантования разместить в середине каждого шага (см. рисунок).

Из рисунка, на котором представлена статическая передаточная характеристика преобразования, следует, что максимальная погрешность квантования  равна . Если уровень квантования выбрать равным верхней или нижней границе интервала   квантования, то максимальная ошибка квантования возрастет до величины .

Оценим величину среднеквадратической погрешности квантования при следующих условиях: во-первых, возможные значения измеряемого сигнала распределены равномерно, во-вторых, измеряемая величина и случайная погрешность независимы. Доказано, что при условии , закон распределения погрешности квантования не зависит от  и близок к равномерному, т.е. плотность вероятности погрешности характеризуется постоянной величиной . Тогда погрешность квантования  на м интервале может быть оценена дисперсией и соответствующим среднеквадратическим отклонением:

.                                                           (5.2)

Дисперсия полной ошибки квантования для всей непрерывной шкалы мгновенных значений сигнала может быть определена как математическое ожидание дисперсий  на отдельных шагах квантования:

                                                                   (5.3)

где величина характеризует вероятность попадания мгновенного значения сигнала в пределы данного шага. Так как   то величина дисперсии погрешности будет равна:

.                                                                                   (5.4)

Таким образом, при квантовании с постоянным шагом и размещении уровней квантования в середине шага (равномерное квантование) среднеквадратическая погрешность квантования связана с интервалом квантования соотношением:

.                                                                                               (5.5)

Шум квантования. При квантовании сигнала по уровню реализация, представляющая собой случайный процесс , заменяется ступенчатой зависимостью . Изменяющуюся во времени погрешность квантования, также представляющую собой случайный процесс, называют шумом квантования:

                                                                            (5.6)

Сохраняя ранее введенные предположения (о малости шага квантования и равномерности распределения в нем мгновенных значений сигнала) и считая случайные процессы  и  эргодическими, среднеквадратическую ошибку равномерного квантования  можно определить по реализации .

В пределах каждого шага квантования  зависимость  можно заменить прямой , где переменный угол наклона прямой. При размещении уровней квантования в середине каждого шага математическое ожидание погрешности квантования равно нулю, а ее среднеквадратическое значение определяется из дисперсии погрешности:

,                                      (5.7)

и соответствует ранее полученному значению:

.

Наряду с шумом квантования у реальных АЦП, выполняющих функцию квантования, имеются составляющие шума, обусловленные неидеальными характеристиками компонентов, т.е. инструментальные (аппаратурные) составляющие. Суммарная мощность шумов квантования , определяемая величиной дисперсии шума, равна:                                                                                   (5.8)

где  – средняя мощность дополнительных шумов, численно равная дисперсии отклонения реальной передаточной характеристики АЦП по сравнению с идеальной.

Квантование сигналов при наличии помех. В реальных условиях на квантуемый сигнал всегда воздействует помеха. Выберем интервал квантования с учетом вероятностных характеристик этой помехи и условия ее аддитивности с сигналом. Очевидно, что мгновенное значение сигнала , попадавшее ранее в й шаг квантования и сопоставлявшееся с уровнем квантования , в результате действия помехи примет значение () и может быть поставлено в соответствие другому уровню квантования . Такой исход приводит к искажению информации и вероятность его не должна превышать допустимого значения.

Обозначим через  условную вероятность сопоставления значения сигнала  уровню квантования  вместо уровня  при условии, что сигнал  принадлежит му шагу квантования. Очевидно, что при наличии помехи условная вероятность ошибочного решения >0, а <0.

Полная вероятность того, что величина () останется в пределах го шага квантования, равна:

.                                                                          (5.9)

Эту вероятность можно также найти, используя совместную плотность вероятности  двух случайных величин и :

                                                                        (5.10)

где некоторая область интегрирования, границы которой найдем, исходя из рисунка:

Рассмотрим интервал квантования, в котором границами интегрирования по  являются значения  и . Верхняя  и нижняя  границы интегрирования по  определяются из условия, что алгебраическая сумма сигнала и помехи не должна выйти за пределы го шага квантования.

Считая помеху некоррелированной с сигналом, запишем:

                                                    (5.11)

где – плотность распределения помехи. Знаменатель выражения (5.11)  для случая равномерного квантования сигнала, мгновенные значения которого в диапазоне от  до  распределены равномерно, равен

.                                                            (5.12)

Определим условную вероятность  в предположении воздействия помехи, распределенной по равномерному закону: , где – амплитуда помехи, симметричной относительно мгновенного значения сигнала. Учитывая, что результаты расчета инвариантны относительно номера интервала квантования и зависят от соотношения амплитуды помехи  и величины , найдем  при :

.                                                      (5.13)

Аналогично находим  при  и :

                                                     (5.14)

Анализ соотношений (5.13) и (5.14) показывает, что нецелесообразно   выбирать меньше , поскольку при  резко возрастает вероятность неправильного квантования сигнала.

Аналогично рассчитывают зависимости для случая помехи, распределенной по нормальному закону распределения. Сравнение результатов расчетов показывает, что для вероятности правильного квантования   воздействие помехи с нормальным законом распределения эквивалентно воздействию равномерно распределенной помехи при соотношении , где – среднеквадратическое отклонение помехи .

PAGE  1


EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  


 

А также другие работы, которые могут Вас заинтересовать

39022. Проектирование экономических информационных 505.5 KB
  Средства структурного анализа и проектирования Метод функционального моделирования SDT Диаграммы потоков данных. Словари данных и спецификации процессов. Моделирование данных. 1 Система управления совокупность взаимодействующих структурных подразделений экономической системы осуществляющих функции управления: планирование – определение цели функционирования экономической системы на различные периоды времени; учет – отображение состояния объекта управления в результате...
39023. Понятие индустриального проектирования 231.5 KB
  Ключевые аспекты технологии индустриального проектирования: Реорганизация реинжиниринг бизнеспроцессов; Моделирование предметной проблемной области; Средства автоматизированного проектирования ИС CSEсредства; Возможность применения типовых решений типовое проектирование. Понятие и виды бизнеспроцессов Определение. Под бизнеспроцессом БП будем понимать совокупность взаимосвязанных операций работ по изготовлению готовой продукции или выполнению услуг на основе потребления ресурсов. Основные черты бизнеспроцессов: Все...
39024. Автоматизированное проектирование ИС (CASE-технология) 76 KB
  Изначально CSEсредства были ориентированы на разработку ПО. Сейчас чаще всего под такими средствами подразумевают любые средства проектирования ИС и или моделирования предметной области. CSEсредства охватывают все стадии ЖЦ ИС анализ проектирование разработка сопровождение. Инструментальные средства – CSEсредства.
39025. Типовое проектирование ИС 58 KB
  Сущность: Является одной из разновидностей индустриального проектирования. Содержание: Процесс проектирования ИС состоит из следующих основных этапов: Разбиение проекта информационной системы на отдельные составляющие компоненты. Основная цель применения ТПР – уменьшение трудоемкости и стоимости проектирования и или разработки ИС.
39026. Основные понятия технологии проектирования информационных систем 66 KB
  Основные понятия технологии проектирования информационных систем Понятие и сущность проектирования ИС Определение Проектирование от лат. Обладает возможностью последовательной детализации и конкретизации могут быть выделены стадии этапы проектирования. Предполагает возможность частичной автоматизации Традиционные виды проектирования: архитектурностроительное машиностроительное технологическое. Проектирование информационных систем – сравнительно новый вид проектирования.
39027. Жизненный цикл информационных систем 92 KB
  Поэтому с точки зрения проектирования ИС имеет смысл говорить о модели жизненного цикла. Модель жизненного цикла ИС – это модель создания и использования ИС отражающая ее различные состояния начиная с момента возникновения необходимости в данном комплексе средств и заканчивая моментом его полного выхода из употребления у пользователей. Вопрос к семинарскому занятию: можно ли назвать моделью жизненного цикла такую модель которая бы охватывала не все возможные состояния ИС а только некоторую их часть. Модель жизненного цикла и технология...
39028. Каноническое проектирование информационных систем 126 KB
  В зависимости от сложности объекта автоматизации и набора задач требующих решения при создании конкретной ИС стадии и этапы работ могут иметь различную трудоемкость. Формирование требований к ИС включает в себя следующие этапы: Обследование объекта и обоснование необходимости создания ИС; Формирование требований пользователя к ИС; Оформление отчёта о выполненной работе и заявки на разработку ИС тактикотехнического задания Обследование объекта автоматизации ОА – важнейшая составляющая предпроектной стадии. Обследование объекта...
39029. Проектирование информационного обеспечения ИС 188 KB
  Информационное обеспечение совокупность единой системы классификации и кодирования информации унифицированных систем документации схем информационных потоков циркулирующих в организации а также методология построения баз данных. Понятие и виды информационного обеспечения Информационное обеспечение ИС является средством для решения следующих задач: однозначного и экономичного представления информации в системе на основе кодирования объектов; организации процедур анализа и обработки информации с учетом характера связей между...
39030. Базовые технологии доступа к БД в Borland C++ Builder 159 KB
  Указания к выполнению лабораторной работы Процессор баз данных Borlnd Dtbse Engine – не единственный механизм организации доступа к данным в БДприложениях. Важным примером таких разработок является технология ODBC которая на сегодняшний день стала фактическим отраслевым стандартом работы с базами данных из клиентских приложений. Аббревиатура ODBC расшифровывается как Open DtBse Connectivity что можно перевести как открытая система связи с базами данных. В системе взаимодействия приложений с базами данных посредством ODBC принято...