19093

Ортогональные преобразования сигналов в базисе функций Уолша

Практическая работа

Физика

Лекция № 6. Ортогональные преобразования сигналов в базисе функций Уолша. При обработке дискретных сигналов большое значение представляет ортонормированная система базисных функций Уолша. Непрерывные функции Уолша относятся к классу кусочнопостоянных знакопере

Русский

2013-07-11

222.5 KB

25 чел.

Лекция № 6.

Ортогональные преобразования сигналов в базисе функций Уолша.

При обработке дискретных сигналов большое значение представляет ортонормированная система базисных функций Уолша. Непрерывные функции Уолша относятся к классу кусочно-постоянных  знакопеременных функций, задаваемых на отрезке  либо  и принимающих значения .  Для представления реальных, ограниченных во времени сигналов с началом отсчета в нулевой точке, удобно пользоваться функциями Уолша с интервалом определения .

Интервал определения функций Уолша можно представить как совокупность  равных подынтервалов, на каждом из которых функции Уолша принимают значения +1 или -1, а на концах подынтервалов  имеют разрывы первого рода, причем в этих точках функции Уолша непрерывны справа.

Совместно записанные и пронумерованные функции Уолша образуют базисную систему, в которой можно разложить произвольный сигнал в ряд Уолша. Поскольку нумерация (упорядочение) функций Уолша может быть выполнена различными способами, то возможны три варианта упорядочения: по Пэли, Хармуту  и Адамару. Каждая из систем может быть построена и аналитически описана с помощью кусочно-постоянных функций Радемахера . Эти функции на интервале  заданы следующим образом:

                                              (6.1)

Выражение является функцией знака                     (6.2)

Функции Радемахера, имеющие  вид совокупности меандров, представлены на рис. 6.1 (приведены первые три функции):

Функции Радемахера ортонормированны на интервале , но не образуют полной системы функций, т.к. являются нечетными функциями относительно середины интервала. В частности, можно подобрать функцию , которая будет ортогональна всем функциям Радемахера. Поэтому, дополнив систему Радемахера функциями, образованными посредством всевозможных произведений функций Радемахера, построим полную систему функций Уолша с различными способами упорядочения.

Диадно-упорядоченная система  функций Уолша (упорядочение по Пэли). Функции Пэли  с номером   ()  формируются из произведений таких функций Радемахера, номера которых определяются по номерам позиций двоичного представления числа , содержащих 1. Если номер функции  имеет следующее двоичное разрядное представление

                                                                              (6.3)

то функции системы Пэли в общем виде представляются в виде:

                                                                           (6.4)

В случае, если  есть степень числа 2 и, следовательно, его двоичное представление содержит одну 1, функция Пэли совпадает с одной из функций Радемахера.

Пример.  Построить систем у функций Пэли для случая

Таким образом, первые три функции, упорядоченные по Пэли, совпадают с тремя первыми функциями Радемахера.  На рис.6.2 изображены функции с номерами 3, 4, 5, упорядоченные по Пэли:


                Упорядочение по Адамару может быть получено из системы Пэли двоичной инверсией номеров функций Пэли, т.е. путем записи разрядов двоичного представления номера функции в обратном порядке. Например, третья функция в системе Адамара () совпадает с шестой функцией в системе Пэли ().  

Систему упорядочения по Хармуту называют системой, функции которой упорядочены по частоте следования или по числу переходов через нулевой уровень (числу смены знаков) на интервале . Запишем функции системы Хармута в форме:

                                                                (6.5)

Анализ (6.5) показывает, что система Хармута представляет собой систему, в которой чередуются четные и нечетные функции относительно середины временного интервала. То есть:      и т.д. Свойство четной и нечетной симметрии уподобляет систему Хармута тригонометрической системе функций . Поэтому спектр сигнала в базисе функций Хармута удобнее сопоставлять со спектром в базисе Фурье из-за аналогии в упорядочении функций.

Поскольку все рассмотренные системы используют одни и те же функции Уолша, но в различной последовательности, они равноправны для представления сигналов.

Перечислим основные свойства непрерывных функций Уолша .

  1.  Ортогональность функций на интервале :

                                                             (6.6)

  1.  Модуль функций Уолша равен 1, т.к. функции принимают только значения :

.                                                                                        (6.7)

  1.  Среднее значение функций Уолша для всех  равно нулю в силу ортогональности с функцией :

                                                                       (6.8)

  1.  Функции Уолша являются ортонормированными в силу (6.6):

         при любом .                                               (6.9)

  1.  Мультипликативность: произведение двух функций Уолша всегда дает новую функцию Уолша из этой же системы:

                                                           (6.10)

где   означает поразрядное суммирование двоичных представлений чисел  и

Разложение непрерывных сигналов по функциям Уолша.

Функции Уолша используют для разложения сигналов с интегрируемым квадратом на интервале определения :

                                                                                        (6.11)

Ряд Уолша записывается в виде:

                                                                             (6.12)

Коэффициенты разложения (спектр Уолша) определяются по формуле:

                                                                             (6.13)

В силу полноты и ортонормированности системы функций Уолша и свойства (6.11)  справедливо равенство Парсеваля:     

                                                                                  (6.14)

              Реальные сигналы в большинстве случаев имеют интервал определения    Для разложения таких сигналов по функциям Уолша необходимо выполнить операцию приведения интервалов определения базисных функций и сигналов. Обычно вводят безразмерный аргумент .  Кроме того, на практике ряд Уолша ограничивают первыми  членами, исходя из точности представления сигналов:

                                                                              (6.15)

PAGE  3


EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

1

1

1

0

0

0

-1

-1

-1

1

1

1

0

0

0

1

1

1

1

_1

_1

_1

1

1


 

А также другие работы, которые могут Вас заинтересовать

68827. Генерація машинного коду 79.5 KB
  Для перевірки подібних обмежень у компіляторах застосовують таблиці символів у яких запам’ятовують для кожного ідентифікатора його тип а можливо і іншу інформацію. У момент читання прикладної реалізації компілятор здійснює пошук відповідної інформації у таблиці.
68828. Використання бінарних дерев при роботі з таблицею символів 163 KB
  Кожний елемент містить змістовну частину і два покажчики на інші вершини. Вершини А С F що не мають ненульових покажчиків називають листями. Окремим випадком дерева є пусте дерево і дерево що складається з однієї вершини. Якщо у дереві є покажчик від вершини А до В то В називають прямим нащадком або сином А.
68829. Розподіл пам’яті 79.5 KB
  Етап розподілу пам’яті майже не залежить від мови програмування та машини. Якщо у тексті вхідної програми зустрічається опис ідентифікатору що дозволяє визначити необхідний об’єм пам’яті для його зберігання то компілятор спеціальним чином виділяє потрібну пам’ять.
68830. Компоненти лінгвістичного забезпечення САПР 60.5 KB
  Звичайно у засобах лінгвістичного забезпечення САПР виділяють три основні групи: мови програмування мови проектування та мови керування. Мови програмування використовують для розробки програм САПР.
68831. Формальні мови 88.5 KB
  Форма уявлення інформації визначається мовою тому у поданій дисципліні розглядаються питання пов’язані з переходом від однієї мови до іншої при представленні деякої інформації. Формальні мови Природні мови англійська російська українська та ін. Позбавитись цих недоліків природних мов дозволило...
68832. Загальна форма означення мови 123.5 KB
  Задати синтаксис це означає задати алфавіт та множину форм усіх речень мови семантика визначає смислове значення усіх цих речень. Існує декілька формальних засобів опису синтаксису мови. Оскільки синтаксис мови пов’язаний з множиною речень рядків символів необхідно домовитись про позначення...
68833. Особливості класифікації формальних мов 117 KB
  Наприклад контекстновільна граматика G1 розглянута у попередній лекції нерегулярна а мова L1 що нею генерується регулярна тому що її можна одержати за допомогою регулярної граматики G2. Граматики типу 3 а також регулярні граматики мають істотні переваги перед іншими типами граматик тому...
68834. Алгоритми 95 KB
  Частковий алгоритм зупиняється на даному вході якщо існує таке натуральне число t що після виконання t необов’язково різних команд цього алгоритму або не виявиться жодної команди яку можна виконати або остання команда є зупинитись.
68835. Скінчені автомати 106.5 KB
  На вхід автомату надходять рядки символів вхідного алфавіту. Кожний черговий символ призводить до того що стан автомату змінюється згідно з функцією а на виході з’являється символ що відповідає функції. Приклад умовного зображення автомату для обчислення суми двох двійкових чисел наведено...