19093

Ортогональные преобразования сигналов в базисе функций Уолша

Практическая работа

Физика

Лекция № 6. Ортогональные преобразования сигналов в базисе функций Уолша. При обработке дискретных сигналов большое значение представляет ортонормированная система базисных функций Уолша. Непрерывные функции Уолша относятся к классу кусочнопостоянных знакопере

Русский

2013-07-11

222.5 KB

29 чел.

Лекция № 6.

Ортогональные преобразования сигналов в базисе функций Уолша.

При обработке дискретных сигналов большое значение представляет ортонормированная система базисных функций Уолша. Непрерывные функции Уолша относятся к классу кусочно-постоянных  знакопеременных функций, задаваемых на отрезке  либо  и принимающих значения .  Для представления реальных, ограниченных во времени сигналов с началом отсчета в нулевой точке, удобно пользоваться функциями Уолша с интервалом определения .

Интервал определения функций Уолша можно представить как совокупность  равных подынтервалов, на каждом из которых функции Уолша принимают значения +1 или -1, а на концах подынтервалов  имеют разрывы первого рода, причем в этих точках функции Уолша непрерывны справа.

Совместно записанные и пронумерованные функции Уолша образуют базисную систему, в которой можно разложить произвольный сигнал в ряд Уолша. Поскольку нумерация (упорядочение) функций Уолша может быть выполнена различными способами, то возможны три варианта упорядочения: по Пэли, Хармуту  и Адамару. Каждая из систем может быть построена и аналитически описана с помощью кусочно-постоянных функций Радемахера . Эти функции на интервале  заданы следующим образом:

                                              (6.1)

Выражение является функцией знака                     (6.2)

Функции Радемахера, имеющие  вид совокупности меандров, представлены на рис. 6.1 (приведены первые три функции):

Функции Радемахера ортонормированны на интервале , но не образуют полной системы функций, т.к. являются нечетными функциями относительно середины интервала. В частности, можно подобрать функцию , которая будет ортогональна всем функциям Радемахера. Поэтому, дополнив систему Радемахера функциями, образованными посредством всевозможных произведений функций Радемахера, построим полную систему функций Уолша с различными способами упорядочения.

Диадно-упорядоченная система  функций Уолша (упорядочение по Пэли). Функции Пэли  с номером   ()  формируются из произведений таких функций Радемахера, номера которых определяются по номерам позиций двоичного представления числа , содержащих 1. Если номер функции  имеет следующее двоичное разрядное представление

                                                                              (6.3)

то функции системы Пэли в общем виде представляются в виде:

                                                                           (6.4)

В случае, если  есть степень числа 2 и, следовательно, его двоичное представление содержит одну 1, функция Пэли совпадает с одной из функций Радемахера.

Пример.  Построить систем у функций Пэли для случая

Таким образом, первые три функции, упорядоченные по Пэли, совпадают с тремя первыми функциями Радемахера.  На рис.6.2 изображены функции с номерами 3, 4, 5, упорядоченные по Пэли:


                Упорядочение по Адамару может быть получено из системы Пэли двоичной инверсией номеров функций Пэли, т.е. путем записи разрядов двоичного представления номера функции в обратном порядке. Например, третья функция в системе Адамара () совпадает с шестой функцией в системе Пэли ().  

Систему упорядочения по Хармуту называют системой, функции которой упорядочены по частоте следования или по числу переходов через нулевой уровень (числу смены знаков) на интервале . Запишем функции системы Хармута в форме:

                                                                (6.5)

Анализ (6.5) показывает, что система Хармута представляет собой систему, в которой чередуются четные и нечетные функции относительно середины временного интервала. То есть:      и т.д. Свойство четной и нечетной симметрии уподобляет систему Хармута тригонометрической системе функций . Поэтому спектр сигнала в базисе функций Хармута удобнее сопоставлять со спектром в базисе Фурье из-за аналогии в упорядочении функций.

Поскольку все рассмотренные системы используют одни и те же функции Уолша, но в различной последовательности, они равноправны для представления сигналов.

Перечислим основные свойства непрерывных функций Уолша .

  1.  Ортогональность функций на интервале :

                                                             (6.6)

  1.  Модуль функций Уолша равен 1, т.к. функции принимают только значения :

.                                                                                        (6.7)

  1.  Среднее значение функций Уолша для всех  равно нулю в силу ортогональности с функцией :

                                                                       (6.8)

  1.  Функции Уолша являются ортонормированными в силу (6.6):

         при любом .                                               (6.9)

  1.  Мультипликативность: произведение двух функций Уолша всегда дает новую функцию Уолша из этой же системы:

                                                           (6.10)

где   означает поразрядное суммирование двоичных представлений чисел  и

Разложение непрерывных сигналов по функциям Уолша.

Функции Уолша используют для разложения сигналов с интегрируемым квадратом на интервале определения :

                                                                                        (6.11)

Ряд Уолша записывается в виде:

                                                                             (6.12)

Коэффициенты разложения (спектр Уолша) определяются по формуле:

                                                                             (6.13)

В силу полноты и ортонормированности системы функций Уолша и свойства (6.11)  справедливо равенство Парсеваля:     

                                                                                  (6.14)

              Реальные сигналы в большинстве случаев имеют интервал определения    Для разложения таких сигналов по функциям Уолша необходимо выполнить операцию приведения интервалов определения базисных функций и сигналов. Обычно вводят безразмерный аргумент .  Кроме того, на практике ряд Уолша ограничивают первыми  членами, исходя из точности представления сигналов:

                                                                              (6.15)

PAGE  3


EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

1

1

1

0

0

0

-1

-1

-1

1

1

1

0

0

0

1

1

1

1

_1

_1

_1

1

1


 

А также другие работы, которые могут Вас заинтересовать

37894. ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ ВОЗДУХА КАПИЛЛЯРНЫМ МЕТОДОМ 2.7 MB
  Изучение внутреннего трения воздуха как одного из явлений переноса в газах. При протекании жидкости или газа в узкой прямолинейной цилиндрической трубе капилляре при малых скоростях потока течение является ламинарным т. поток газа движется отдельными слоями которые не смешиваются между собой. Для идеального газа  υТ  2.
37895. ОПРЕДЕЛЕНИЕ МОЛЯРНОЙ МАССЫ И ПЛОТНОСТИ ГАЗА МЕТОДОМ ОТКАЧКИ 140 KB
  10 ЛАБОРАТОРНАЯ РАБОТА № 124 ОПРЕДЕЛЕНИЕ МОЛЯРНОЙ МАССЫ И ПЛОТНОСТИ ГАЗА МЕТОДОМ ОТКАЧКИ 1. Цель работы Ознакомление с одним из методов определения молярной массы и плотности газа. Теоретическая часть Состояние некоторой массы газа определяется значениями трёх параметров: давлением P под которым находится газ его температурой T и объёмом V.1 представляет собой уравнение состояния данной массы газа.
37896. ОПРЕДЕЛЕНИЕ ТЕПЛОЁМКОСТИ ТВЁРДЫХ ТЕЛ 440.5 KB
  Если температура калориметра с исследуемым образцом очень медленно увеличивать от начальной T0 на ∆T то энергия электрического тока пойдет на нагревание образца калориметра: 2.18 где I и U ток и напряжение нагревателя τ время нагревания m0 и m массы калориметра и исследуемого образца c0 c удельные теплоёмкости калориметра и исследуемого образца ∆Q потери тепла в теплоизоляцию калориметра и в окружающее пространство.18 количества теплоты расходованной на нагрев калориметра и потери теплоты в окружающее...
37897. ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ ГАЗА МЕТОДОМ НАГРЕТОЙ НИТИ 268.5 KB
  12 ЛАБОРАТОРНАЯ РАБОТА № 127 ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ ГАЗА МЕТОДОМ НАГРЕТОЙ НИТИ Цель работы Изучение теплопроводности в газах и определение коэффициента теплопроводности воздуха. В твердых телах распространение тепла может происходить как путем теплопроводности так и путем конвекции или того и другого способа одновременно. Основным законом теплопроводности является закон Фурье который в одномерном случае распространения тепла в одном направлении пусть вдоль оси х имеет вид:...
37898. ИЗУЧЕНИЕ ПРИНЦИПА РАБОТЫ ТУННЕЛЬНОГО ДИОДА 3.81 MB
  Если полная энергия частицы Е U0 то с классической точки зрения частица может двигаться либо в области I где х 0 либо в области III где х d. Частица полная энергия которой меньше высоты потенциального барьера U0 не может с классической точки зрения перейти барьер из области I в область III. Волновая функция в этом случае отлична от нуля и в области II даже при значениях Е U0.1 для области II...
37899. Исследование космического излучения 1.03 MB
  Изучение поглощения космического излучения в свинце9 3. Изучение углового распределения интенсивности космического излучения.12 Лабораторная работа № 88 Исследование космического излучения 1. Цель работы 1 изучение зависимости интенсивности космического излучения от толщины пройденных им свинцовых пластин; 2 проверка феноменологической формулы зависимости интенсивности космического излучения от угла наблюдения.
37900. ИЗУЧЕНИЕ ПРОБЕГА -ЧАСТИЦ В ВОЗДУХЕ 568.16 KB
  Методические указания знакомят студентов с явлением радиоактивности и с механизмами потери энергии электронов при их прохождении через вещество. Студентам предоставляется возможность эксперементально исследовать зависимость интенсивности лучей от толщины слоя воздуха и определить линейный коэффициент поглащения а также оценить верхнюю границу энергии спектра и выявить наиболее важный механизм потерь энергии электронов при их движении в воздухе. Оценить верхнюю границу энергии спектра и выявить наиболее важный механизм...
37901. Изучение явления внешнего фотоэффекта 70.5 KB
  Контрольные вопросы8 Список литературы8 Лабораторная работа № 93 Изучение явления внешнего фотоэффекта 1. Цель работы Снятие вольт амперной характеристики внешнего фотоэффекта изучение законов внешнего фотоэффекта определение постоянной Планка. Типичная вольт амперная характеристика фотоэффекта т. Таким образом опытным путем установлены следующие основные законы внешнего фотоэффекта: 1.
37902. Определение концентрации и подвижности носителей тока в полупроводнике методом эффекта холла 335.5 KB
  Эффект Холла 4 2. Физическая природа эффекта Холла 5 3. Контрольные вопросы 13 Список литературы 13 Лабораторная работа № 98 Определение концентрации и подвижности носителей тока в полупроводнике методом эффекта холла 1.