19093

Ортогональные преобразования сигналов в базисе функций Уолша

Практическая работа

Физика

Лекция № 6. Ортогональные преобразования сигналов в базисе функций Уолша. При обработке дискретных сигналов большое значение представляет ортонормированная система базисных функций Уолша. Непрерывные функции Уолша относятся к классу кусочнопостоянных знакопере

Русский

2013-07-11

222.5 KB

29 чел.

Лекция № 6.

Ортогональные преобразования сигналов в базисе функций Уолша.

При обработке дискретных сигналов большое значение представляет ортонормированная система базисных функций Уолша. Непрерывные функции Уолша относятся к классу кусочно-постоянных  знакопеременных функций, задаваемых на отрезке  либо  и принимающих значения .  Для представления реальных, ограниченных во времени сигналов с началом отсчета в нулевой точке, удобно пользоваться функциями Уолша с интервалом определения .

Интервал определения функций Уолша можно представить как совокупность  равных подынтервалов, на каждом из которых функции Уолша принимают значения +1 или -1, а на концах подынтервалов  имеют разрывы первого рода, причем в этих точках функции Уолша непрерывны справа.

Совместно записанные и пронумерованные функции Уолша образуют базисную систему, в которой можно разложить произвольный сигнал в ряд Уолша. Поскольку нумерация (упорядочение) функций Уолша может быть выполнена различными способами, то возможны три варианта упорядочения: по Пэли, Хармуту  и Адамару. Каждая из систем может быть построена и аналитически описана с помощью кусочно-постоянных функций Радемахера . Эти функции на интервале  заданы следующим образом:

                                              (6.1)

Выражение является функцией знака                     (6.2)

Функции Радемахера, имеющие  вид совокупности меандров, представлены на рис. 6.1 (приведены первые три функции):

Функции Радемахера ортонормированны на интервале , но не образуют полной системы функций, т.к. являются нечетными функциями относительно середины интервала. В частности, можно подобрать функцию , которая будет ортогональна всем функциям Радемахера. Поэтому, дополнив систему Радемахера функциями, образованными посредством всевозможных произведений функций Радемахера, построим полную систему функций Уолша с различными способами упорядочения.

Диадно-упорядоченная система  функций Уолша (упорядочение по Пэли). Функции Пэли  с номером   ()  формируются из произведений таких функций Радемахера, номера которых определяются по номерам позиций двоичного представления числа , содержащих 1. Если номер функции  имеет следующее двоичное разрядное представление

                                                                              (6.3)

то функции системы Пэли в общем виде представляются в виде:

                                                                           (6.4)

В случае, если  есть степень числа 2 и, следовательно, его двоичное представление содержит одну 1, функция Пэли совпадает с одной из функций Радемахера.

Пример.  Построить систем у функций Пэли для случая

Таким образом, первые три функции, упорядоченные по Пэли, совпадают с тремя первыми функциями Радемахера.  На рис.6.2 изображены функции с номерами 3, 4, 5, упорядоченные по Пэли:


                Упорядочение по Адамару может быть получено из системы Пэли двоичной инверсией номеров функций Пэли, т.е. путем записи разрядов двоичного представления номера функции в обратном порядке. Например, третья функция в системе Адамара () совпадает с шестой функцией в системе Пэли ().  

Систему упорядочения по Хармуту называют системой, функции которой упорядочены по частоте следования или по числу переходов через нулевой уровень (числу смены знаков) на интервале . Запишем функции системы Хармута в форме:

                                                                (6.5)

Анализ (6.5) показывает, что система Хармута представляет собой систему, в которой чередуются четные и нечетные функции относительно середины временного интервала. То есть:      и т.д. Свойство четной и нечетной симметрии уподобляет систему Хармута тригонометрической системе функций . Поэтому спектр сигнала в базисе функций Хармута удобнее сопоставлять со спектром в базисе Фурье из-за аналогии в упорядочении функций.

Поскольку все рассмотренные системы используют одни и те же функции Уолша, но в различной последовательности, они равноправны для представления сигналов.

Перечислим основные свойства непрерывных функций Уолша .

  1.  Ортогональность функций на интервале :

                                                             (6.6)

  1.  Модуль функций Уолша равен 1, т.к. функции принимают только значения :

.                                                                                        (6.7)

  1.  Среднее значение функций Уолша для всех  равно нулю в силу ортогональности с функцией :

                                                                       (6.8)

  1.  Функции Уолша являются ортонормированными в силу (6.6):

         при любом .                                               (6.9)

  1.  Мультипликативность: произведение двух функций Уолша всегда дает новую функцию Уолша из этой же системы:

                                                           (6.10)

где   означает поразрядное суммирование двоичных представлений чисел  и

Разложение непрерывных сигналов по функциям Уолша.

Функции Уолша используют для разложения сигналов с интегрируемым квадратом на интервале определения :

                                                                                        (6.11)

Ряд Уолша записывается в виде:

                                                                             (6.12)

Коэффициенты разложения (спектр Уолша) определяются по формуле:

                                                                             (6.13)

В силу полноты и ортонормированности системы функций Уолша и свойства (6.11)  справедливо равенство Парсеваля:     

                                                                                  (6.14)

              Реальные сигналы в большинстве случаев имеют интервал определения    Для разложения таких сигналов по функциям Уолша необходимо выполнить операцию приведения интервалов определения базисных функций и сигналов. Обычно вводят безразмерный аргумент .  Кроме того, на практике ряд Уолша ограничивают первыми  членами, исходя из точности представления сигналов:

                                                                              (6.15)

PAGE  3


EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

1

1

1

0

0

0

-1

-1

-1

1

1

1

0

0

0

1

1

1

1

_1

_1

_1

1

1


 

А также другие работы, которые могут Вас заинтересовать

40117. Модель с фиксированным уровнем запасов 44.5 KB
  Модель с фиксированным уровнем запасов основана на фиксированных моментах подачи заказа. В модели издержки управления запасами в явном виде не рассматриваются и фиксированный размер заказа отсутствует. Mx уровень запасов M определяется по формуле: М = В SL L R 1 где L время выполнения заказа R интервал м у проверками 0 R 2R моменты проверки наличия товара на складе 0 L R L 2R L моменты поставки заказа. примерно в случаев фактический сбыт за время доставки заказа м.
40118. Двухуровневая система управления товарными запасами, (s,S)-система 36.5 KB
  Данная система является системой с постоянным уровнем запасов в которой установлен нижний предел для размера заказа. Покажем что действительно нижний предел размера заказа: L время выполнения заказа P точка заказа; уровень запасов при котором делается заказ. Заказываем реже чем в модель с фиксированным уровнем запасов и размер заказа при этом больше. Рекомендации по выбору: I модель система с постоянным уровнем заказа система с пост.
40119. Математическая модель и схема статического МОБ в денежном выражении. Методологические вопросы построения МОБ 56 KB
  Расчеты проводимые при разработке МОБ: объемы производства продуктов при изготовлении которых участвует данный вид продукции; объемы потребления данного вида продукции для непроизводственных целей по различным каналам; норма расхода данного продукта для цели производственного и непроизводственного потребления по различным направлениям использования продукции и по различным видам. Схема МОБ представляет собой синтез 2х таблиц: первая характеризует детальную структуру затрат на производство в разрезе отдельных видов продукции а др. ...
40120. Свойства коэффициентов прямых материальных затрат в МОБ. Определение косвенных и полных материальных затрат 40.5 KB
  Свойства коэффициентов прямых материальных затрат в МОБ. Определение косвенных и полных материальных затрат. Коэффициент пропорциональности затрат к выпуску в денежном выражении коэффициент прямых материальных затрат. Матрица А ={ij} является матрицей коэффициентов прямых затрат.
40121. Основные понятия теории баз данных: объект, свойство, связь. Диаграмма «сущность-связей». Логическая, физическая, концептуальная схемы базы данных 53.5 KB
  Основные понятия теории баз данных: объект свойство связь. Логическая физическая концептуальная схемы базы данных Информационная система это система реализующая автоматический сбор обработку и манипулирование данными и включающая в себя технические средства обработки данных программное обеспечение и соответствующий персонал. Структурирование данных это введение согласований о способах представления данных. База данных поименованная совокупность данных отражающая состояние объектов и их отношений в рассматриваемой области.
40122. Реляционная модель данных. Основные понятия: отношение, кортеж, домен. Получение нормальных форм отношений из диаграммы «сущность-связь». Реляционная алгебра и ее основные понятия 78 KB
  Реляционная модель данных отличается удобным для пользователя табличным представлением и доступом к данным. Она является совокупностью простейших двумерных таблиц – отношений. В реляционной модели достигается гораздо более высокий уровень абстракции данных, чем в иерархической или сетевой. Это обеспечивается за счет использования математической теории отношений (реляционная алгебра).
40123. Реляционная алгебра, основные операторы реляционной алгебры. Связь языка SQL с операторами реляционной алгебры 100.5 KB
  Основная идея реляционной алгебры состоит в том что коль скоро отношения являются множествами то средства манипулирования отношениями могут базироваться на традиционных теоретикомножественных операциях дополненных некоторыми специальными операциями специфичными для баз данных совокупность которых образует полную алгебру отношений. В состав теоретикомножественных операций входят операции: Объединения отношений. При выполнении операции объединения двух отношений производится отношение включающее все кортежи входящие хотя бы в одно из...
40124. Реляционная модель данных. Теория нормализации. Нормальные формы: первая, вторая, третья, Бойса-Кодда 50 KB
  Реляционная модель данных отличается удобным для пользователя табличным представлением и доступом к данным. В реляционной модели достигается гораздо более высокий уровень абстракции данных чем в иерархической или сетевой. К числу достоинств реляционного подхода можно отнести: наличие небольшого набора абстракций которые позволяют сравнительно просто моделировать большую часть распространенных предметных областей и допускают точные формальные определения оставаясь интуитивно понятными; наличие простого и в то же время мощного...
40125. Физическая организация баз данных. Файлы: последовательные, с прямым доступом, с хеш-адресацией, индексно-последовательные, В-деревья 78 KB
  Предполагается что для доступа к iой записи нужно просмотреть все i1 записи. Последовательный доступ с фиксированной длиной записи. Картинка i = 0 i 1L Если записи располагаются в оперативной памяти то это массив. Если записи расположены на диске то порядок ввода вывода данных зависит от языка программирования.