19094

Принципы линейной обработки дискретных сигналов.

Практическая работа

Физика

Лекция № 7. Принципы линейной обработки дискретных сигналов. Линейная обработка дискретных сигналов цифровая обработка цифровая фильтрация произвольная линейная операция над входными дискретными данными. Дискретный фильтр цифровой фильтр дискретная сис

Русский

2013-07-11

258.5 KB

11 чел.

Лекция № 7.

Принципы линейной обработки дискретных сигналов.

Линейная обработка дискретных сигналов (цифровая обработка, цифровая фильтрация) – произвольная линейная операция над входными дискретными данными.

Дискретный фильтр (цифровой фильтр) – дискретная система (физическое устройство или компьютерная программа) преобразующая последовательность дискретных отсчетов  входного сигнала в последовательность отсчетов  выходного сигнала, обладающая свойствами линейности и стационарности:

,                                                                                          (7.1)

где – линейный стационарный оператор преобразования.  Линейность означает, что выходная реакция системы на сумму сигналов равна сумме реакций на эти сигналы, поданные на вход по отдельности. То есть в линейной системе входной последовательности на выходе соответствует последовательность  при любых коэффициентах . Стационарность системы означает, что задержка входного сигнала приводит к такой же задержке выходного сигнала, не меняя его формы.

 Преобразование сигналов дискретными (цифровыми) фильтрами описывается разностным уравнением.  Дифференциальное уравнение, описывающее линейную систему, преобразуется в форму разностного уравнения, если отсчеты функции происходят в равноотстоящие моменты времени:   Для аналоговой системы линейное дифференциальное уравнение в операторном виде  записывается так:

                                                                                 (7.2)

где                                                                    (7.3)

                                                                              (7.4)

 коэффициенты дифференциального уравнения;  порядок уравнения (порядок наивысшей производной в от выходного сигнала);  порядок наивысшей производной от входного сигнала;

При переходе от аналоговой формы к дискретной порядок уравнений  и  сохраняется, но значения коэффициентов  меняются.  Введя обозначения: , и , получим:   

.            (7.5)

Разностное уравнение (7.5) в общем виде записывается следующим образом:

      или                                                        (7.6)

                                                        (7.7)

Таким образом,  дискретный фильтр представляет собой линейную комбинацию равноотстоящих отсчетов  некоторой функции , а также вычисленных значений на выходе фильтра .

Если в формуле (7.7)  все коэффициенты , фильтр называют нерекурсивным (трансверсальным). Он работает по алгоритму:

                               (7.8)

Если хотя бы один из коэффициентов , то фильтр называют рекурсивным (фильтром с обратной связью). В нем для формирования го значения выходного сигнала используют предыдущие значения как входного, так и выходного сигналов.

Основные структурные элементы дискретных (цифровых) фильтров. В дискретных фильтрах в соответствии с (7.7) используют три операции: задержку на интервал отсчета, сложение и умножение. Соответственно основными элементами дискретных фильтров как физических устройств являются:

  •  элемент единичной задержки (на интервал дискретизации сигнала);
  •  сумматор;
  •  умножитель.

Условные обозначения этих элементов и выполняемые ими операции представлены в таблице 7.1.

Элемент

Символическое обозначение

Выполняемая операция

Элемент единичной задержки

Сумматор

Умножитель

Дискретный сигнал в процессе его цифровой обработки может быть разложен (представлен) только по системам дискретных базисных функций, у которых отсчеты по времени совпадают с отсчетами сигнала. Рассмотрим несколько наиболее важных систем дискретных базисных функций.

  1.  Цифровой единичный импульс, или единичный отсчет:

                                                                                         (7.9)

На рисунке показан единичный импульс, задержанный на  отсчетов. Этот импульс в дискретных системах играет такую же роль, как дельта-функция Дирака  в аналоговых системах. Однако единичный импульс – это реализуемый сигнал, а второй – обобщенная функция. Единичный импульс без задержки записывается в виде:

                                                                              (7.10)

  1.  Цифровой единичный скачок, или ступенчатая функция:

                                                                               (7.11)

  1.  Экспоненциальная дискретная функция (убывающая экспонента):

                                                                               (7.12)

  1.  Косинусоидная дискретная функция:

                                                                             (7.13)

            На рисунке

  1.  Комплексная дискретная экспонента:

                                                                 (7.14)

          При изменении  модуль функции  остается равным единице, а фаза  нарастает по линейному закону. Это значит, что вектор, изображающий данный сигнал в комплексной плоскости, равномерно вращается против часовой стрелки, описывая окружность радиуса 1.

Определим некоторые, важные для дальнейшего, виды последовательностей дискретных отсчетов. Последовательность  называется сдвинутой и получается из последовательности  при ее сдвиге по оси  вправо, если , и влево, если

Периодической является последовательность ,  удовлетворяющая условию  , где целые числа,  Число  называется периодом последовательности. Периодическую последовательность достаточно задать на интервале одного периода, например при

Круговой (периодической) сверткой двух периодических с периодом  последовательностей  и  называется последовательность

                                    (7.15)

Последовательность (7.15) является периодической с периодом .

Введем определение спектра дискретного сигнала. Пусть дискретный сигнал  получен дискретизацией с шагом  непрерывного аналогового сигнала . Модель дискретного сигнала  может быть записана в виде:

                                                                       (7.16)

Тогда спектральная плотность  дискретного  сигнала запишется в виде:

            (7.17)

Из (7.17) следует, что спектр дискретного сигнала является периодической функцией частоты  с периодом, равным частоте дискретизации    Отсюда обратное преобразование Фурье для дискретного сигнала будет иметь вид:

                                                        (7.18)

Очевидно, что свойство периодичности спектра распространяется также на его модуль  и аргумент  Для вещественных последовательностей модуль спектра  является четной функцией частоты, а аргумент – нечетной функцией частоты.

PAGE  1


EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

+

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

. . .

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

1,0

1,0

1,0


 

А также другие работы, которые могут Вас заинтересовать

165. Теория эндокринологии 370.79 KB
  Болезни щитовидной железы. Диффузный токсический зоб. Гипогликемия и гипогликемическая кома. Диабетическая ретинопатия. Синдром Иценко—Кушинга. Вторичный и третичный гиперпаратиреоз. Гипоталамогипофизарные заболевания и краниофарингиома.
166. Эмотивность и перевод: особенности языковой передачи эмоций при художественном переводе с английского языка на русский 241.63 KB
  Выражение эмоционального состояния. Произведения англоязычных писателей второй половины XX – начала XXI века. Среди типичных синтаксических средств эмотивности. Феномен эмотивности представляется малоизученным с точки зрения контрастивной (или сравнительной) лингвистики.
167. Компенсация при передаче стилистически сниженных высказываний на разных уровнях текста 303.34 KB
  Передача особенностей стилистически сниженных высказываний средствами западных языков. Проблематика перевода языковых единиц диалектного происхождения. Территориальные диалекты английского языка и негритянский диалект как пример этносоциального диалекта.
168. Языковые конструирование гендера в журналах об образе жизни (на материале английского языка) 289.15 KB
  Изучение языка как антропоориентированного феномена. Гендерные исследования в системе лексики, фразеологии и ономастики. Опыт конструирования гендера в средствах СМИ. Эгалитарная гендерная идеология и общая либерализация патриархальных стереотипов.
169. Проектирование железобетонного каркаса многоэтажного гражданского здания 487.5 KB
  Расчёт сечения ригеля по сечениям, нормальным к продольной оси. Расчёт и конструирование колонны первого этажа. Разработка конструктивной схемы здания. Расчёт и конструирование плиты монолитного перекрытия.
170. Проектирование механического привода 408.4 KB
  Определение частоты вращении тихоходного вала. Предварительное определение частоты вращения вала электродвигателя. Расчет червячной цилиндрический передачи. Выбор кинематической схемы редуктора. Выбор материалов и допускаемых напряжений.
171. Психологическое консультирование родителей, имеющих детей с нарушениями в эмоциональной сфере 302.5 KB
  Разработка путей оптимизации деятельности психолога-консультанта при работе с родителями, чьи дети имеют нарушения в эмоциональной сфере. Теоретический анализ исследований эмоциональной сферы в психолого-педагогической литературе.
172. Решение дифференциальных уравнений численными методами в пакете MathCad 356 KB
  решение дифференциального уравнения вручную, операторным методом, приближенное решение с помощью рядов. Расчет погрешностей приближенных методов по сравнению с точным. Численное решение ДУ методом Рунге-Кутта.
173. Характеристика роботи підприємства ВАТ Дніпроцемент 285 KB
  Сировинна база ВАТ Дніпроцемент, асортиментні стандарти на готову продукцію. Технологічна схема виробництва цементу на ВАМ Дніпроцеент. Сушильне відділення, цех випалу клінкера. Технічна характеристика основного обладнання.