19096

Z-преобразование

Практическая работа

Физика

Лекция № 9. Zпреобразование. Удобным способом анализа дискретных последовательностей является Zпреобразование. При Zпреобразовании разностные уравнения описывающие работу дискретной системы преобразуются в алгебраические уравнения с которыми проще производит

Русский

2013-07-11

233 KB

66 чел.

Лекция № 9.

Z-преобразование.

Удобным способом анализа дискретных последовательностей является Z-преобразование. При  Z-преобразовании разностные уравнения, описывающие работу дискретной системы, преобразуются в алгебраические уравнения, с которыми проще производить необходимые действия. Z-преобразование играет для дискретных сигналов и систем такую же роль, как преобразование Лапласа – для аналоговых сигналов.

Определение Z-преобразования. Дискретной последовательности отсчетов  ставится в соответствие функция комплексной переменной z, определяемая следующим образом:

                                                                   (9.1)

Функция  определена только для тех значений z, при которых ряд (9.1) сходится.

Если последовательность имеет ограниченную длину, то  сходится в Z-плоскости везде, за исключением, быть может, точек z = 0 или z = .

Получим Z-преобразование для некоторых часто встречающихся на практике дискретных сигналов.

Единичный импульс, определяемый как

.                                                                                      (9.2)

Используя формулу (9.1), получаем:

                                                                           (9.3)

Функция  сходится во всей комплексной плоскости.

Единичный скачок, определяемый соотношением:

.                                                                                        (9.4)

Используя определение Z-преобразования, получаем:

                                                                  (9.5)

Ряд (9.5) является суммой бесконечной геометрической прогрессии с первым членом 1 и знаменателем . Как известно, такой ряд сходится при  то есть при  и его сумма равна:                                                                                      (9.6)

Значение  является единственной особой точкой (полюсом) функции .

Экспоненциальная дискретная функция, определяемая как

.                                                                                    (9.7)

                                          (9.8)

Как и в предыдущем случае, этот ряд представляет собой сумму геометрической прогрессии с первым членом, равным 1 и знаменателем . Таким образом, ряд сходится при   т.е. при , и имеет особую точку при :

                                                                          (9.10)

Комплексная дискретная экспонента, определяемая как

.                                                                                  (9.11)

                                      (9.12)

причем  сходится при , т.к. единственной особой точкой  является .

Связь Z-преобразования с преобразованием Лапласа найдем, записав аналоговый сигнал в виде суммы дискретных отсчетов и набора дельта-функций:

                                                                        (9.13)

где шаг дискретизации. Преобразование Лапласа для такого сигнала равно:

    (9.14)

Воспользовавшись фильтрующим свойством дельта-функции, получим:

                                                                            (9.15)

Сравнивая соотношения (9.1) и (9.15), замечаем, что одна формула переходит в другую при замене   .  Таким образом, Z-преобразование можно получить из преобразования Лапласа путем перехода к новой переменной:

                                                          (9.16)

Смысл использования  Z-преобразования при анализе дискретных сигналов вытекает из следующего. Так как справедливо соотношение:

 ,                                                                                (9.17)

то изменение фазовой характеристики сигнала  означает задержку сигнала на один шаг дискретизации  и соответствует задержке сигнала на один такт в области.

Переход от преобразования Лапласа к Z-преобразованию при описании дискретных систем необходим по следующей причине. Дискретизация аналогового сигнала приводит к периодичности частотного спектра, то есть появлению бесконечного ряда сдвинутых копий спектра исходного непрерывного сигнала. Очевидно, эффект дискретизации приводит к появлению в плоскости  бесконечной конфигурации особых точек (полюсов и нулей), повторяющихся через интервал .

При переходе от плоскости к плоскости точка  отображается в точку . Поэтому путь вдоль мнимой оси  в плоскости отображается в единичную окружность в плоскости, так как на мнимой оси  и, следовательно  Можно показать, что левая (устойчивая) полоса плоскости шириной  отображается внутрь круга единичного радиуса  плоскости. Все последующие полосы плоскости шириной , соответствующие периодическому частотному спектру дискретного сигнала, также отображаются внутрь круга единичного радиуса плоскости. Поэтому конфигурация особых точек (полюсов и нулей) в плоскости становится конечной.

Свойства Z-преобразования.

  1.  Линейность. 

Если  и  являются  Z-преобразованиями соответствующих сигналов  и , то сигналу будет отвечать Z-преобразование  при любых постоянных  и

  1.  Задержка (сдвиг последовательности).

Если Z-преобразование сигнала  равно , то Z-преобразование сигнала , задержанного на  тактов, будет равно .

Доказательство.

                        (9.18)

Таким образом, при задержке сигнала на  тактов необходимо умножить его Z-преобразование на множитель .

В частности, если сигнал  получен путем сдвига сигнала  на один такт в сторону запаздывания, то его Z-преобразование . Следовательно, символ  служит  оператором единичной задержки (на один интервал дискретизации) в области.

3. Свертка.

Введем дискретную линейную свертку , которую определим следующим образом:

                                             (9.19)

Вычислим ее Z-преобразование:

      (9.20)

Итак, Z-преобразование линейной свертки двух дискретных сигналов равно  произведению их  Z-преобразований.

Системная функция (передаточная функция) дискретного фильтра.

Применим третье свойство Z-преобразования к уравнению дискретной фильтрации:     . Поскольку выходной сигнал дискретной системы есть линейная свертка входного сигнала с импульсной характеристикой системы, то      

,                                                                                       (9.21)

где – Z-преобразования соответственно входного и выходного сигналов системы, а – Z-преобразование ее импульсной характеристики:

.                                                                                     (9.22)

Учитывая, что   равняется отношению двух преобразованных сигналов (выходного и входного), ее называют системной или передаточной функцией. Она играет важнейшую роль в построении дискретных цифровых систем.

Применим  Z-преобразование к обеим частям разностного уравнения:

   (9.23)

Отсюда получаем общий вид передаточной функции:

                                                                (9.24)

Таким образом, передаточная (системная) функция физически реализуемой дискретной системы может быть представлена в виде отношения полиномов по отрицательным степеням переменной .

PAGE  1


 

А также другие работы, которые могут Вас заинтересовать

22345. Основные архитектуры РПТ. Шумовые характеристики, динамический диапазон 431.5 KB
  Как и в квадратурном смесителе здесь используется пара идентичных смесителей на которые помимо РЧ сигнала подается сигнал с гетеродина в квадратуре. Сигналы в I и Q каналах содержат полную информацию об огибающей входного сигнала и могут быть обработаны в соответствующим образом построенном демодуляторе. В приемнике прямого преобразования наличие рассогласования в цепях смесителя и ФНЧ не ведет к ухудшению селективности а лишь к некоторому искажению полезного сигнала что зачастую не имеет никакого значения при приеме цифровых данных....
22346. Входные каскады РПТ. Высокочастотные фильтры, УРЧ 247.5 KB
  С точки зрения минимизации вносимых приемником шумов следовало бы в качестве первого каскада использовать малошумящий усилитель МШУ имеющий максимальный коэффициент усиления и минимальный коэффициент шума. Современные МШУ имеют коэффициент шума до 0. В диапазоне частот 450 мГц МШУ имеет коэффициент шума 2. Суммарный коэффициент шума в последовательном включении МШУ фильтр рассчитывается по 1.
22347. Непрерывность функций комплексной переменной 468 KB
  Если то функция называется непрерывной в точке . Иными словами: непрерывна в точке если для любого сколь угодно малого существует положительное число такое что 2 для всех удовлетворяющих неравенству 3 короче . Геометрически это означает что для всех точек лежащих внутри круга с центром в точке достаточно малого радиуса соответствующие значения функции изображаются точками лежащими внутри круга с центром в точке сколь...
22348. Интегрирование функций комплексной переменной 1.52 MB
  кривая с выбранным направлением движения вдоль нее и на ней функция комплексной переменной fz. Если C кусочногладкая а значит спрямляемая кривая а fz кусочнонепрерывная и ограниченная функция то интеграл 1 всегда существует. Если функция fz аналитична в односвязной области D то для всех кривых C лежащих в этой области и имеющих общие концы интеграл имеет одно и то же значение. fz аналитическая функция.
22349. Формула Коши и теорема о среднем 821.5 KB
  Пусть функция аналитична в связной области и непрерывна в . Тогда для любой внутренней точки этой области имеет место так называемая формула Коши: 1 где граница области проходимая так что область остается всё время слева. Таким образом формула Коши позволяет вычислить значение аналитической функции в любой точке области если известны граничные значения этой функции. Выбросим из области кружок радиусом с центром в точке и заметим что в полученной...
22351. Теоремы Лиувилля и Мореры 98 KB
  По определению аналитическая функция это функция комплексной переменной обладающая производной в каждой точке некоторой области D. Если функция fz аналитична в области D и непрерывна в то она обладает в каждой точке D производными всех порядков причем n я производная представляется формулой 1 где C граница области D. По определению производной и формуле Коши имеем: Но очевидно что при функция равномерна для всех на C стремиться к и следовательно по теореме 2 предыдущей лекции для случая семейства функций...
22352. Представление аналитических функций рядами 464 KB
  Ряды Тейлора. при каких условиях функция представима своим рядом Тейлора с центром в точке : 4 даёт Теорема 1 Коши. Функция представима своим рядом Тейлора 4 в любом открытом круге с центром в точке в котором она аналитична.
22353. Ряды Лорана 269.5 KB
  Поэтому обе формулы можно объединить в одну: 7 Полученное разложение 6 функции fz по положительным и отрицательным степеням za с коэффициентами определяемыми по формулам 7 называется лорановским разложением функции fz с центром в точке a; ряд 2 называется правильной а ряд 4 главной частью этого разложения. и в нашем рассуждении могут быть взяты сколь угодно близкими к r и R а q может сколь угодно мало отличаться от 1 то разложение 6 можно считать справедливым для...