19098

Цифровая обработка сигналов в частотной области. Дискретное преобразование Фурье

Практическая работа

Физика

Лекция № 11. Цифровая обработка сигналов в частотной области. Дискретное преобразование Фурье. Дискретное преобразование Фурье ДПФ относится к классу основных преобразований при цифровой обработке сигналов. Дискретное преобразование Фурье по возможности вычисляе

Русский

2013-07-11

198 KB

37 чел.

Лекция № 11.

Цифровая обработка сигналов в частотной области. Дискретное преобразование Фурье.

Дискретное преобразование Фурье (ДПФ) относится к классу основных преобразований при цифровой обработке сигналов. Дискретное преобразование Фурье, по возможности вычисляемое быстрыми методами, лежит в основе различных технологий спектрального анализа.

Известно, что при дискретизации аналогового сигнала его спектр становится периодическим с периодом повторения, равным частоте дискретизации . С другой стороны, дискретному спектру должен соответствовать периодический сигнал. Рассмотрим в качестве исходных данных последовательность  дискретных отсчетов , заданных на отрезке , . Моделью последовательности таких отсчетов является сигнал из смещенных по времени дельта-функций:

.                                                                             (11.1)

Мысленно периодизируем этот сигнал с периодом . Так как  дискретный сигнал (11.1) – периодический, его спектр должен быть дискретным с расстоянием между гармониками, равными . Этот дискретный периодический сигнал можно представить рядом Фурье:

.                                                                                   (11.2)

Коэффициенты  этого ряда находят согласно формуле:

                     (11.3)

Переходя к новой  переменной  , получим:

.                             (11.4)

Так как , окончательно имеем:

                                                                                (11.5)

Соотношение (11.5), позволяющее вычислить комплексные амплитуды гармоник дискретного сигнала, представляет собой линейную комбинацию отсчетов этого сигнала. Его называют прямым дискретным преобразованием Фурье  (ДПФ).

Наряду с прямым ДПФ существует обратное дискретное преобразование Фурье:

                                                    (11.6)

Замечание. В размещении множителя  в выражении (11.5) нет полного единства. В некоторых источниках этот множитель относят к формуле обратного ДПФ, удаляя его из формулы для прямого ДПФ.

Ортогональный дискретный базис Фурье, в котором выполняется ДПФ, представляет собой систему дискретных экспоненциальных функций (ДЭФ), заданную на дискретной временной оси  отсчетами:

                                                (11.7)

Система функций (11.7) представляет собой ограниченный набор экспонент с частотами, кратными основной частоте , поскольку  периодична по  с периодом .

Свойства дискретного преобразования Фурье.

  1.  Линейность.

Дискретное преобразование Фурье – линейное преобразование, то есть если последовательностям  и  с одним и тем же периодом  соответствуют наборы гармоник  и , то последовательности  будет соответствовать спектр .

  1.  Симметрия.

Свойство симметрии, которым обладает спектр непрерывного сигнала, сохраняется и для спектра дискретного периодического сигнала. Если отсчеты  – вещественные числа, тогда коэффициенты ДПФ, номера которых расположены симметрично относительно , образуют сопряженные пары:

.                       (11.8)

Из формулы (11.8) следует, что спектр является сопряжено симметричным относительно , то есть содержит ровно такое же количество информации, что и сам сигнал. Действительно, если исходный сигнал представляется набором из  вещественных чисел, то его спектр представляется набором из  комплексных чисел, каждое из которых с информационной точки зрения эквивалентно двум вещественным. Вторая половина спектра взаимно-однозначно связана с первой. Можно считать, что  коэффициенты  отвечают отрицательным частотам. При изучении амплитудного спектра сигнала они не дают новой информации.

Гармоника с нулевым номером (постоянная составляющая), как следует из (11.5) представляет собой среднее значение всех отсчетов сигнала на одном периоде:

.                                                                              (11.9)

Если  четное число, то

                                                                              (11.10)

И амплитуда гармоники с номером  определяется суммой отсчетов с чередующимися знаками:  .

  1.  ДПФ круговой свертки.

Возьмем две последовательности  и  одинаковой длины , ДПФ которых соответственно равны   и .  Вычислим их круговую свертку по одному периоду:

         .                                                                  (11.11)

Найдем точечное ДПФ этой свертки:

                  (11.12)

При выводе формулы (11.12) учтено свойство сдвига периодической последовательности. Таким образом, круговой свертке дискретизированных и заданных на одном временном промежутке сигналов соответствует перемножение их спектров.

Вычисление круговой свертки двух сигналов с помощью ДПФ осуществляется по следующему алгоритму:

  •  вычисление ДПФ исходных сигналов по формуле (11.5);
  •  перемножение коэффициентов полученных ДПФ согласно (11.12);
  •  вычисление сигнала  с помощью обратного ДПФ полученной последовательности .
  1.  Равенство Парсеваля для дискретных сигналов.

 Определим значение , используя формулу ДПФ:

               (11.13)

При выводе формулы (11.13) использовано условие ортонормированности  дискретных экспоненциальных функций:

                                                              (11.14)

Таким образом, мощность сигнала  на  отсчетах равна сумме мощностей его частотных компонентов.

  1.  Связь ДПФ и спектра дискретного сигнала. 

Имея один и тот же набор значений дискретного сигнала , можно рассчитать либо спектральную функцию  этого дискретного сигнала по формуле (8.12), либо его ДПФ по формуле (11.5). Сравнение этих формул показывает, что ДПФ представляет собой просто дискретные отсчеты спектральной функции дискретного сигнала, соответствующие частотам :

.                                                                         (11.15)

Из соотношения (11.15) следует важный вывод: если добавить к конечному набору отсчетов некоторое количество нулей, спектральная функция дискретного сигнала, естественно, не изменится, но ДПФ даст большее число спектральных отсчетов, соответствующих частотам, более тесно расположенным в интервале от нуля до частоты дискретизации.

  1.  Связь ДПФ с Z-преобразованием. 

Сравнивая формулу прямого ДПФ дискретной последовательности  с формулой  Z-преобразования, видим, что коэффициенты ДПФ равны значениям Z-преобразования этого сигнала в  точках, равномерно распределенных по единичной окружности Z-плоскости. Эти коэффициенты однозначно представляют саму последовательность,  поскольку она может быть точно восстановлена с помощью обратного ДПФ.

Получим Z-преобразование последовательности через коэффициенты ДПФ этой последовательности:

          .                              (11.16)

Формула (11.16) показывает, что Z-преобразование конечной последовательности ,  непосредственно связано с коэффициентами , , ее ДПФ.

 

PAGE  3


 

А также другие работы, которые могут Вас заинтересовать

7546. Исторические предпосылки возникновения ПР 82 KB
  Исторические предпосылки возникновения ПР. Учебные цели: познакомиться с историческими источниками Public Relations: риторикой, рекламой, общественным мнением выделить основные этапы институционализации Public Relations в США и...
7547. Основы теории коммуникации 73 KB
  Основы теории коммуникации Учебные цели: изучить сущность информационного и коммуникативного пространства ознакомиться с видами и типами коммуникации, выделить свойства и закономерности коммуникативного пространства охарактеризовать символич...
7548. Субъекты и объекты в ПР-деятельности. Общественное мнение. Группы общественности 61 KB
  Субъекты и объекты в ПР-деятельности. Общественное мнение. Группы общественности Учебные цели: ознакомиться с основными субъектами, объектами, целями, способами коммуникации в системной деятельности Public Relations выделить пять основных целей Pub...
7549. Современные технологии внутреннего ПР 38.5 KB
  Современные технологии внутреннего ПР Когда мы говорим о технологиях Public Relations, связанных с деятельностью конкретного предприятия, благотворительной организации, некоммерческого фонда или коммерческой компании, в...
7550. Внешний ПР. Организация значимых событий 42.5 KB
  Внешний ПР. Организация значимых событий. Внешние Public Relations -технологии В качестве внешних Public Relations-технологий, как правило, могут использоваться: 1) устное сообщение (пресс-конференции, выступления перед различными с...
7551. Основные характеристики современных СМИ 93 KB
  Основные характеристики современных СМИ Системные характеристики СМИ Средства массовой информации как сложно организованный объект должны отвечать требованиям системного подхода: сохранять целостный характер, несмотря на существование разнообразных,...
7552. ПР технологии работы со СМИ 44.5 KB
  ПР технологии работы со СМИ Организация пресс-туров Пресс-тур - это мероприятие, подготовленное службой по связям с общественностью организации специально для журналистов, рассчитанное на достаточно продолжительное время с целью получить ...
7553. Спонсорство и фандрайзинг-технологии 44 KB
  Спонсорство и фандрайзинг-технологии Спонсорство или спонсоринг Очень важная технология Public Relations - организация и проведение филантропических мероприятий. Наряду с этикой ставятся и практически значимые причины такого...
7554. Контент-анализ и работа с текстами в ПР 48.5 KB
  Контент-анализ и работа с текстами в ПР Учебные цели: ознакомиться с основными методами анализа текстов в Паблик Рилейшенз, научиться проводить контент анализ СМИ, качественный анализ текста, освоить процедуру оценки читабельности текста. На аналити...