19098

Цифровая обработка сигналов в частотной области. Дискретное преобразование Фурье

Практическая работа

Физика

Лекция № 11. Цифровая обработка сигналов в частотной области. Дискретное преобразование Фурье. Дискретное преобразование Фурье ДПФ относится к классу основных преобразований при цифровой обработке сигналов. Дискретное преобразование Фурье по возможности вычисляе

Русский

2013-07-11

198 KB

46 чел.

Лекция № 11.

Цифровая обработка сигналов в частотной области. Дискретное преобразование Фурье.

Дискретное преобразование Фурье (ДПФ) относится к классу основных преобразований при цифровой обработке сигналов. Дискретное преобразование Фурье, по возможности вычисляемое быстрыми методами, лежит в основе различных технологий спектрального анализа.

Известно, что при дискретизации аналогового сигнала его спектр становится периодическим с периодом повторения, равным частоте дискретизации . С другой стороны, дискретному спектру должен соответствовать периодический сигнал. Рассмотрим в качестве исходных данных последовательность  дискретных отсчетов , заданных на отрезке , . Моделью последовательности таких отсчетов является сигнал из смещенных по времени дельта-функций:

.                                                                             (11.1)

Мысленно периодизируем этот сигнал с периодом . Так как  дискретный сигнал (11.1) – периодический, его спектр должен быть дискретным с расстоянием между гармониками, равными . Этот дискретный периодический сигнал можно представить рядом Фурье:

.                                                                                   (11.2)

Коэффициенты  этого ряда находят согласно формуле:

                     (11.3)

Переходя к новой  переменной  , получим:

.                             (11.4)

Так как , окончательно имеем:

                                                                                (11.5)

Соотношение (11.5), позволяющее вычислить комплексные амплитуды гармоник дискретного сигнала, представляет собой линейную комбинацию отсчетов этого сигнала. Его называют прямым дискретным преобразованием Фурье  (ДПФ).

Наряду с прямым ДПФ существует обратное дискретное преобразование Фурье:

                                                    (11.6)

Замечание. В размещении множителя  в выражении (11.5) нет полного единства. В некоторых источниках этот множитель относят к формуле обратного ДПФ, удаляя его из формулы для прямого ДПФ.

Ортогональный дискретный базис Фурье, в котором выполняется ДПФ, представляет собой систему дискретных экспоненциальных функций (ДЭФ), заданную на дискретной временной оси  отсчетами:

                                                (11.7)

Система функций (11.7) представляет собой ограниченный набор экспонент с частотами, кратными основной частоте , поскольку  периодична по  с периодом .

Свойства дискретного преобразования Фурье.

  1.  Линейность.

Дискретное преобразование Фурье – линейное преобразование, то есть если последовательностям  и  с одним и тем же периодом  соответствуют наборы гармоник  и , то последовательности  будет соответствовать спектр .

  1.  Симметрия.

Свойство симметрии, которым обладает спектр непрерывного сигнала, сохраняется и для спектра дискретного периодического сигнала. Если отсчеты  – вещественные числа, тогда коэффициенты ДПФ, номера которых расположены симметрично относительно , образуют сопряженные пары:

.                       (11.8)

Из формулы (11.8) следует, что спектр является сопряжено симметричным относительно , то есть содержит ровно такое же количество информации, что и сам сигнал. Действительно, если исходный сигнал представляется набором из  вещественных чисел, то его спектр представляется набором из  комплексных чисел, каждое из которых с информационной точки зрения эквивалентно двум вещественным. Вторая половина спектра взаимно-однозначно связана с первой. Можно считать, что  коэффициенты  отвечают отрицательным частотам. При изучении амплитудного спектра сигнала они не дают новой информации.

Гармоника с нулевым номером (постоянная составляющая), как следует из (11.5) представляет собой среднее значение всех отсчетов сигнала на одном периоде:

.                                                                              (11.9)

Если  четное число, то

                                                                              (11.10)

И амплитуда гармоники с номером  определяется суммой отсчетов с чередующимися знаками:  .

  1.  ДПФ круговой свертки.

Возьмем две последовательности  и  одинаковой длины , ДПФ которых соответственно равны   и .  Вычислим их круговую свертку по одному периоду:

         .                                                                  (11.11)

Найдем точечное ДПФ этой свертки:

                  (11.12)

При выводе формулы (11.12) учтено свойство сдвига периодической последовательности. Таким образом, круговой свертке дискретизированных и заданных на одном временном промежутке сигналов соответствует перемножение их спектров.

Вычисление круговой свертки двух сигналов с помощью ДПФ осуществляется по следующему алгоритму:

  •  вычисление ДПФ исходных сигналов по формуле (11.5);
  •  перемножение коэффициентов полученных ДПФ согласно (11.12);
  •  вычисление сигнала  с помощью обратного ДПФ полученной последовательности .
  1.  Равенство Парсеваля для дискретных сигналов.

 Определим значение , используя формулу ДПФ:

               (11.13)

При выводе формулы (11.13) использовано условие ортонормированности  дискретных экспоненциальных функций:

                                                              (11.14)

Таким образом, мощность сигнала  на  отсчетах равна сумме мощностей его частотных компонентов.

  1.  Связь ДПФ и спектра дискретного сигнала. 

Имея один и тот же набор значений дискретного сигнала , можно рассчитать либо спектральную функцию  этого дискретного сигнала по формуле (8.12), либо его ДПФ по формуле (11.5). Сравнение этих формул показывает, что ДПФ представляет собой просто дискретные отсчеты спектральной функции дискретного сигнала, соответствующие частотам :

.                                                                         (11.15)

Из соотношения (11.15) следует важный вывод: если добавить к конечному набору отсчетов некоторое количество нулей, спектральная функция дискретного сигнала, естественно, не изменится, но ДПФ даст большее число спектральных отсчетов, соответствующих частотам, более тесно расположенным в интервале от нуля до частоты дискретизации.

  1.  Связь ДПФ с Z-преобразованием. 

Сравнивая формулу прямого ДПФ дискретной последовательности  с формулой  Z-преобразования, видим, что коэффициенты ДПФ равны значениям Z-преобразования этого сигнала в  точках, равномерно распределенных по единичной окружности Z-плоскости. Эти коэффициенты однозначно представляют саму последовательность,  поскольку она может быть точно восстановлена с помощью обратного ДПФ.

Получим Z-преобразование последовательности через коэффициенты ДПФ этой последовательности:

          .                              (11.16)

Формула (11.16) показывает, что Z-преобразование конечной последовательности ,  непосредственно связано с коэффициентами , , ее ДПФ.

 

PAGE  3


 

А также другие работы, которые могут Вас заинтересовать

22114. Понятие устойчивости конечного автомата 48 KB
  Дело в том что триггера в схеме имеет различные времена задержек сигналов обратной связи которые поступают с выходов триггеров на их входы через комбинационную схему II. По этим причинам если при переходе автомата из состояния ai в as должны измениться состояния нескольких триггеров то между выходными сигналами этих триггеров начинаются гонки. изменит свое состояние раньше других триггеров может через цепь обратной связи изменить может изменить сигналы возбуждения на входах других триггеров до того момента как они изменят свои состояния....
22115. Синтез конечных автоматов 31.5 KB
  В ЦА выходные сигналы в данный момент времени зависят не только от значения входных сигналов в тот же момент времени но и от состояния схемы которое в свою очередь определяется значениями входных сигналов поступивших в предшествующие моменты времени. Понятие состояния введено в связи с тем что часто возникает необходимость в описании поведения систем выходные сигналы которых зависят не только от состояния входов в данный момент времени но и от некоторых предысторий т. Состояния как раз и соответствуют некоторой памяти о прошлом...
22116. Способы задания автомата 362 KB
  Существует несколько способов задания работы автомата но наиболее часто используются табличный и графический. Совмещенная таблица переходов и выходов автомата Мили: xj ai a0 an x1 a0x1 a0x1 anx1 anx1 xm a0xm a0xm anxm anxm Задание таблиц переходов и выходов полностью описывает работу конечного автомата поскольку задаются не только сами функции переходов и выходов но и также все три алфавита: входной выходной и алфавит состояний. Для задания автомата Мура требуется одна таблица поскольку в этом...
22117. Частичные автоматы 194 KB
  Оказывается что для любого автомата Мили существует эквивалентный ему автомат Мура и обратно для любого автомата Мура существует эквивалентный ему автомат Мили. Рассмотрим алгоритм перехода от произвольного конечного автомата Мили к эквивалентному ему автомату Мура. Требуется построить эквивалентный ему автомат Мура Sb = {Ab Xb Yb b b} у которого Xb = Xa Yb = Ya т. Для определения множества состояний Ab автомата Мура образуем всевозможные пары вида ai yg где yg выходной сигнал приписанный входящей в ai дуге.
22118. Абстрактный синтез конечных автоматов 25.5 KB
  Составить аналогичную таблицу описывающую работу конечного автомата не представляется возможным т. множество допустимых входных слов автомата вообще говоря бесконечно. Мы рассмотрим один из возможных способов формального задания автоматов а именно задание автомата на языке регулярных событий. Представление событий в автоматах.
22119. Операции в алгебре событий 24.5 KB
  Дизъюнкцией событий S1 S2 Sk называют событие S = S1vS2vvSk состоящее из всех слов входящих в события S1 S2 Sk. Произведением событий S1 S2 Sk называется событие S = S1 S2 Sk состоящее из всех слов полученных приписыванием к каждому слову события S1 каждого слова события S2 затем слова события S3 и т. слова входящие в события S1S2 и S2S1 различны: т. Итерацией события S называется событие{S} состоящее из пустого слова e и всех слов вида S SS SSS и т.
22120. Система основных событий 28.5 KB
  Событие состоящее из всех слов входного алфавита всеобщее событие. F = {x1 v x2 v v xm} Событие содержащее все слова оканчивающиеся буквой xi. Событие содержащее все слова оканчивающиеся отрезком слова l1 S = F l1 Событие содержащее все слова начинающиеся с отрезка слова l1и оканчивающиеся на l2: S = l1 F l2 Событие содержащее только однобуквенные слова входного алфавита S = x1 v x2 v v xm Событие содержащее только двухбуквенные слова входного алфавита S = x1 v x2 v v xm x1 v x2 v v xm Событие содержащее все...
22121. Генетические основы эволюции 118.5 KB
  Комбинативная изменчивость изменчивость в основе которой лежит образование комбинаций генов которых не было у родителей. Комбинативная изменчивость обуславливается следующими процессами: независимым расхождением гомологичных хромосом в мейозе; случайным сочетанием хромосом при оплодотворении; рекомбинацией генов в результате кроссинговера. Частота мутаций не одинакова для разных генов и для разных организмов. Поскольку генов в каждой гамете много например у человека в геноме содержится около 30 тысяч генов то в каждом поколении около...
22122. ЭЛЕМЕНТАРНЫЕ ФАКТОРЫ ЭВОЛЮЦИИ 88 KB
  Тогда частота аллеля b в популяции будет медленно но неуклонно возрастать в каждом поколении на одну десятитысячную если этому возрастанию не будут препятствовать или способствовать другие факторы эволюции. В принципе только благодаря мутационному процессу новый аллель может практически полностью вытеснить старый аллель из популяции. Однако в одной популяции растущей на вершине урансодержащих гор вблизи Большого Медвежьего озера Канада обнаружены многочисленные мутантные растения с бледнорозовыми цветками. Изоляция это прекращение...