19101

Устойчивость дискретных систем

Практическая работа

Физика

Лекция № 13. Устойчивость дискретных систем. Линейная дискретная система с постоянными параметрами стационарный фильтр называется устойчивой если при любых начальных условиях и любом ограниченном входном сигнале выходной сигнал также остается ограниченным то е...

Русский

2013-07-11

199 KB

17 чел.

Лекция № 13.

Устойчивость дискретных систем.

Линейная дискретная система с постоянными параметрами (стационарный фильтр) называется устойчивой, если при любых начальных условиях и любом ограниченном входном сигнале выходной сигнал также остается ограниченным, то есть из условия  для всех  следует,  

Необходимым и достаточным условием устойчивости одномерного стационарного линейного фильтра является следующее требование к его импульсной характеристике:

,                                                                                      (13.1)

то есть требование сходимости ряда, составленного из модулей отсчетов импульсной характеристики фильтра.

Необходимость. Предположим сначала, что условие (13.1) не выполняется, то есть . Рассмотрим ограниченную последовательность, заданную значениями                                                                                  (13.2)

Так как выходные отсчеты сигнала равны свертке входных отсчетов и значений импульсной характеристики дискретной системы, т.е.

,                                                                        (13.3)

то при  отклик системы равен:

                                                (13.4)

Таким образом, последовательность  не ограничена, следовательно, неравенство (13.1) является необходимым условием устойчивости системы.

Достаточность. Предположим, что условие (13.1) выполняется, а на вход поступает ограниченная последовательность отсчетов сигнала . Из формулы (13.3) получаем:

          (13.5)

Если , то  и система – устойчива.

 Устойчивость нерекурсивных  дискретных систем. Как ранее отмечалось, в нерекурсивных дискретных системах для вычисления очередного отсчета выходного сигнала  используются только отсчеты входного сигнала . Поэтому алгоритм работы такой системы имеет вид:

                                                                                (13.6)

Системная (передаточная) функция такой системы является рациональной функцией, то есть полиномом степени  комплексного аргумента :

.                                                                                      (13.7)

Нерекурсивные стационарные линейные фильтры обладают замечательной особенностью: их импульсные характеристики  имеют конечное число ненулевых отсчетов, причем эти отсчеты равны коэффициентам  алгоритма фильтрации. Действительно, в соответствии с (9.22) и (13.7):

.                                                                (13.8)

Отсюда следует, что                                                       (13.9)

Таким образом, импульсная характеристика нерекурсивного стационарного линейного фильтра имеет конечное число отличных от нуля отсчетов, и в соответствии с (13.1) такой фильтр всегда устойчив. Свойство (13.9) обусловило еще одно название таких фильтров – фильтры с конечной импульсной характеристикой (КИХ-фильтры).

Устойчивость рекурсивных  дискретных систем.  Для рекурсивных дискретных систем использовать критерий устойчивости в форме (13.1) затруднительно, поскольку необходимо суммировать бесконечный ряд модулей отсчетов импульсной характеристики. Выразим критерий (13.1) в другой форме, удобной для исследования рекурсивных фильтров.

Рассмотрим физически реализуемый фильтр  порядка с системной функцией и для простоты предположим, что все полюсы простые. Отметим, что для физически реализуемых фильтров степень полинома в числителе не превышает степень полинома в знаменателе. Импульсная характеристика такого фильтра определяется соотношением:

.                                                                          (13.10)

Для  имеем:

,                                           (13.11)

а при имеем следующее выражение:

.                                                                    (13.12)

Представляя  полюсы  в виде:  , полагая при этом что

,                                                                              (13.13)

можно записать следующее соотношение:

                              (13.14)

Так как функция аналитична в окрестностях точек  и , то  и все вычеты конечны, то есть    для  . Поэтому из (13.13) и (13.14) следует:

.                                                                    (13.15)

Так как по условию (13.13) , то ряд в правой части соотношения (13.15) сходится и

.  Таким образом, соотношение (13.13) представляет собой достаточное условие устойчивости фильтра.

Итак, если полюса функции  лежат внутри круга единичного радиуса          Z-плоскости, то такой фильтр устойчив. Если хотя бы один полюс  расположен на единичной окружности  или во внешней части круга единичного радиуса, то такая   представляет неустойчивый фильтр. Заметим, что положение нулей системной функции не влияет на устойчивость фильтра.

Недостатки полюсного критерия устойчивости обусловлены необходимостью определения корней характеристического уравнения, являющихся полюсами системной функции. Аналитических методов решения алгебраических уравнений, порядок которых выше четвертого, не существует. Поэтому нахождение полюсов системной функции высокого порядка возможно лишь численными методами.

Существуют алгебраические и частотные критерии устойчивости стационарных линейных дискретных систем, позволяющие судить об устойчивости фильтра без нахождения корней характеристического уравнения. Например, критерий Джури, аналогичный критерию Рауса-Гурвица для аналоговых систем.

Пример. Проверить на устойчивость следующий рекурсивный фильтр 2порядка.

Решение.  Запишем два уравнения относительно двух сумматоров в Z-преобразованой форме:

                                                     (13.16)

Из (13.6) определяем системную функцию такого фильтра:

                                                 (13.7)

где  корни характеристического уравнения, являющиеся полюсами системной функции. Так как  и , следовательно, полюса системной функции  лежат внутри круга единичного радиуса, и фильтр является устойчивым.

Примечание. Неустойчивый фильтр, безусловно, неработоспособен в том случае, когда входной сигнал действует неограниченно долго, так как при этом выходной сигнал  перестанет зависеть от входного сигнала. Но он работоспособен и используется на практике в тех случаях, когда входной сигнал действует в течение ограниченного интервала времени. Например, цифровой интегратор с системной  функцией   (эта функция имеет полюс , т.е. фильтр – неустойчив)  вполне работоспособен и используется на практике, если входной сигнал  действует лишь при , после чего следует сброс и восстановление начальных условий. Цифровой интегратор может входить в состав замкнутой следящей системы. При этом за счет обратной связи система может обладать устойчивостью, несмотря на то, что интегратор, являющийся динамическим звеном системы, неустойчив.

PAGE  4


EMBED Equation.DSMT4  

EMBED Equation.DSMT4  


 

А также другие работы, которые могут Вас заинтересовать

60760. Что такое гендер 39.5 KB
  Цель – достичь образовательных результатов. Планируемые результаты: - личностные: 1. Выявлять реальные связи и зависимости между гендером и требованиями к поведению человека. - предметные: 1. Объяснять смысл понятия «гендер», «социальный пол», «социальное поведение».
60761. Контроль на уроках информатики 170 KB
  Проверка работы школы, знаний учащихся воспринимается ими как огорчение, как источник стрессов и переживаний. Учителя, быстро продвигаясь вперед, с опасением и нежеланием приступают к проверке достигнутых результатов.
60763. Модификатор Surface 1.94 MB
  Присоедините их командой Attach. Для этого выделите один сплайн, разверните свиток Geometry, щёлкните по кнопке Attach и общёлкайте остальные сплайны. Получится составная фигура.
60764. Наполненный парфюмерный флакон и его визуализация 753.5 KB
  Нарисуйте прямую линию (рис. 2.) сплайновым инструментом Line в окне проекции Front (Спереди). По высоте линия должна быть равна высоте флакона. Рисуйте сплайн снизу вверх.
60766. Проект «Картинна галерея» 278 KB
  Ознайомитись з такими об‘єктами: форма Form текстове поле Lbel малюнок Imge кнопка Button та їх основними властивостями: підпис Cption колір Color шрифт Font видимість Visible ширина Width висота Height.
60767. Село моє – найкраще місце на землі 1.06 MB
  В селі випалювали різні гончарні вироби у печах, які називалися горни. Звідси пішла назва Угорники.