19102

Реализация алгоритмов цифровой фильтрации

Практическая работа

Физика

Лекция № 14. Реализация алгоритмов цифровой фильтрации. Графическим представлением алгоритмов цифровой фильтрации являются структурные схемы. Структурную схему дискретной системы можно составить либо по разностному уравнению либо с помощью системной передаточн...

Русский

2013-07-11

281 KB

24 чел.

Лекция № 14.

Реализация алгоритмов цифровой фильтрации.

Графическим представлением алгоритмов цифровой фильтрации являются структурные схемы. Структурную схему дискретной системы можно составить либо по разностному уравнению, либо с помощью системной (передаточной) функции. Для нерекурсивных фильтров уравнение дискретной фильтрации имеет вид:

.                         (14.1)                               Этому уравнению соответствует передаточная функция:

,                                                                                           (14.2)

где коэффициентами  являются отсчеты импульсной характеристики фильтра. Количество используемых предыдущих отсчетов  называют порядком фильтра.

Построим структурную схему, реализующую алгоритм уравнений (14.1) и (14.2) в виде прямой формы.

Схема содержит  элементов задержки  на один шаг дискретизации, осуществляющих запоминание отсчетов сигнала на время ,  умножителей на постоянные коэффициенты   и многовходовый сумматор   Очевидно, что в реальном устройстве линия задержки содержит конечное число элементов, поэтому импульсная характеристика такого фильтра является конечной по длительности (КИХ-фильтр).

Простота анализа и реализации, а также наглядная связь коэффициентов фильтра с отсчетами его импульсной характеристики и абсолютная устойчивость привели к тому, что нерекурсивные фильтры широко применяются на практике. Однако для получения хороших частотных характеристик (например, полосовых фильтров с высокой прямоугольностью АЧХ) необходимы нерекурсивные фильтры высокого порядка – до нескольких сотен и даже тысяч.

При построении нерекурсивных фильтров применяют и другие структуры, например, последовательные или параллельные структуры, которые будут рассмотрены позднее.

В любом реальном цифровом фильтре, шумы и погрешности, появляющиеся при квантовании сигналов, существенно зависят от структуры фильтра. Рассмотрим возможные варианты синтеза структур на примере рекурсивных фильтров. Разностное уравнение таких фильтров в общем случае имеет вид:

,                                                           (14.3)

а системная функция записывается так:

.                                       (14.4)

Степени полиномов в числителе и знаменателе могут совпадать, а могут различаться, но в любом случае . Простая структура реализации разностного уравнения (14.3), отвечающая прямой форме реализации  приведена на рис. 14.2.

Прямая форма реализации состоит из двух частей: верхняя часть отображает первую сумму алгоритма фильтрации и полностью соответствует структуре нерекурсивного линейного фильтра, а нижняя часть – вторую сумму алгоритма (14.3) и представляет собой ветвь отрицательной обратной связи. Структурная схема содержит  элементов задержки  на шаг дискретизации,  умножителей на постоянные коэффициенты ,  а также многовходовый сумматор.

Прямая форма реализации фильтра проста, наглядна, полностью соответствует системной функции (14.4) и не требует повышенной разрядности линий задержки. Однако,  очевидным недостатком прямой формы является наличие большого количества элементов отдельно для нерекурсивной и рекурсивной частей. Число элементов задержки можно уменьшить, реализуя рекурсивный фильтр в так называемой канонической форме.

Запишем системную функцию  фильтра в виде:

                                    (14.5)

Цифровой фильтр, соответствующий формуле (14.5),  состоит из двух последовательно соединенных фильтров с функциями передачи соответственно  и .  Первый фильтр имеет только полюсы, а второй – только нули. Выразим  и  с помощью вспомогательной функции :

                                                                         (14.6)

.                                                                          (14.7)

Соотношениям (14.6) и (14.7) соответствует пара следующих разностных уравнений (в предположении, что коэффициент  ):

                                                                       (14.8)

.                                                                                  (14.9)

Структура реализации этих разностных уравнений (при условии, что ) показана на рис. 14.3. Ее называют прямой формой № 2 (неканонической). Однако, поскольку в ветвях, соответствующих  и , сигнал  задерживается одинаково, то для построения фильтра достаточно использовать один набор элементов задержки. Эта структура приведена на рис. 14.4, ее называют канонической, поскольку используемое число элементов задержки в точности равно порядку системной (передаточной) функции.

Записав формулу (14.5) в виде:

,                                                                         (14.10)

получим еще одну структуру построения цифрового фильтра, называемую последовательной, или каскадной (рис. 14.5).

Обычно множители  соответствуют либо блокам первого порядка:

,                                                                                        (14.11)

либо блокам второго порядка:

                                                                          (14.12)

Каждый из блоков второго порядка, образующих последовательную форму, можно реализовать либо в прямой форме, либо в канонической форме.

Разложив правую часть формулы (14.4) на простые дроби, получим четвертую структурную схему рекурсивного фильтра:

.                                                                               (14.13)

Слагаемые  соответствуют блокам первого порядка вида:

                                                                                    (14.14)

или блокам второго порядка:

.                                                                         (14.15)

Структурная схема, реализующая соотношение (14.13) и называемая параллельной формой, приведена на рис. 14.6.

На практике в качестве элементарных часто используют однотипные блоки второго порядка с передаточными функциями:

                                                                   (14.16)

Эти блоки называют биквадратными блоками, они являются универсальным звеном, пригодным для построения цифрового фильтра более сложной структуры.

PAGE  5


EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

Рис.14.1

Рис. 4.2

Рис. 14.4

Рис. 14.3

Рис. 14.6

Рис. 14.5


 

А также другие работы, которые могут Вас заинтересовать

17748. Основы теории гидравлических машин 447 KB
  Лекция 3.Основы теории гидравлических машин. Основные параметры насосов. Основными параметрами насосов можно считать те которые чаще всего используются для оценки их потребительских качеств и технических описаниях этих гидравлических машин. Ниже рассматриваются
17749. Основы теории подобия насосов 451 KB
  Лекция 5. Основы теории подобия насосов. Теория подобия создавалась для накопления и хранения экспериментальных данных а также для их использования на объектах подобных между собой. Во все времена перед созданием достаточно крупного и ценного изделия старались сдела
17750. Кавитация в насосах и способы её учёта при выполнении расчётов 233 KB
  Лекция 6. Кавитация в насосах и способы её учёта при выполнении расчётов. Кавитацией в насосах обычно называют процессы сопровождающие вскипание жидкости в области входа в насос. Вскипание связано с падением давления в этой области и в зависимости от величины падения д
17751. Расчёт ступени центробежного насоса 222 KB
  Лекция 7. Расчёт ступени центробежного насоса. Определение частоты вращения ротора насоса n. При известных значениях расхода жидкости Q и удельной работы ступени L частота вращения ротора n определяется с учётом существующих ограничений на этот параметр. Эти ограничения...
17752. Расчёт ступени центробежного насос. Построение лопастей колеса в меридианном сечении и в плане 369.5 KB
  Лекция 8. Расчёт ступени центробежного насоса продолжение Построение лопастей колеса в меридианном сечении и в плане. Особенностью принятого способа изображения лопастей в меридианном сечении является то что лопасти не рассекаются плоскостью а в этой плоскости сов...
17753. Конструкция и работа центробежных насосов 1.33 MB
  Лекция 9. Конструкция и работа центробежных насосов Усилия в центробежных насосах. При работе центробежных насосов на роторе возникают осевое и радиальное усилия. Причина возникновения осевого усилия объясняется на основании рис. 9.1. В соответствии с рисунком осевое у...
17754. Объёмные насосы 709 KB
  Лекция №10. Объёмные насосы Специфической особенностью всех объёмных насосов является то что их производительность в основном определяется величинами периодически замыкаемых в них объёмов и скоростью переноса этих объёмов со стороны всасывания на сторону нагнетани
17755. Действительная подача шестерённого насоса 1.66 MB
  Лекция 11. Объёмные насосы продолжение 10.3. Действительная подача шестерённого насоса. Действительная подача шестерённого насоса меньше теоретической на величину объёмных потерь . Объёмные потери определяются внутренними утечками в насосе и потерями связанны
17756. Регулирование производительности насосов 331 KB
  Лекция №12. Регулирование производительности насосов. При регулировании производительности насосов используют разные способы соединения насосов между собой и разные способы изменения параметров характеристик как насосов так и систем на которые они работают. Все эти ...