19104

Проектирование фильтров с импульсной характеристикой бесконечной длины

Практическая работа

Физика

Лекция № 16. Проектирование фильтров с импульсной характеристикой бесконечной длины. Фильтры с бесконечной импульсной характеристикой БИХфильтры коренным образом отличаются от КИХфильтров изза наличия обратной связи. Во первых они требуют проверки на устойчив

Русский

2013-07-11

174 KB

19 чел.

Лекция № 16.

Проектирование фильтров с импульсной характеристикой бесконечной длины.

Фильтры с бесконечной импульсной характеристикой (БИХ-фильтры) коренным образом отличаются от КИХ-фильтров из-за наличия обратной связи. Во- первых, они требуют проверки на  устойчивость, как и все системы с обратной связью. Во-вторых, они имеют более сложную структуру, их труднее проектировать и анализировать. Кроме того, их фазочастотная  характеристика принципиально не линейна. Почему же их используют? Потому, что они очень эффективны. БИХ-фильтры требуют намного меньше умножений на один выходной отсчет, чтобы реализовать требуемую частотную характеристику. Они позволяют строить фильтры реального времени, которые работают на значительно более высоких частотах дискретизации, чем КИХ-фильтры. Второе принципиальное достоинство состоит в том, что БИХ-фильтры могут аппроксимировать заданные аналоговые фильтры. КИХ-фильтры такой возможности не предоставляют.

Стандартные методы проектирования (синтеза) БИХ-фильтров делятся на три базовых класса:

  •  метод инвариантного преобразования импульсной характеристики;
  •  метод билинейного z-преобразования;
  •  оптимизационные методы, основанные на алгоритмах итерационного моделирования коэффициентов фильтра.

Рассмотрим метод инвариантного преобразования импульсной характеристики, основанный на дискретизации импульсной характеристики аналогового прототипа. Для этого используем общую форму записи Z-преобразования импульсной характеристики БИХ-фильтров, которая  имеет вид:

.                                                                       (16.1)

Существуют два варианта метода инвариантного преобразования.

 Вариант 1 требует применения как обратного преобразования Лапласа, так и Z-преобразования. Его основные этапы (шаги) заключаются в следующем:

  1.  Получить передаточную функцию  аналогового фильтра-прототипа с   требуемой частотной характеристикой.

2.   По передаточной функции  определить непрерывную импульсную  характеристику , используя обратное преобразование Лапласа.

3.   Определить частоту дискретизации  и шаг дискретизации . Частоту  дискретизации выбирают в зависимости от абсолютной частоты аналогового фильтра-прототипа. Из-за проблем наложения спектральных характеристик, свойственных этому методу, должна намного превосходить ширину спектра фильтруемых сигналов.

4.   Подставить значение (не переменную!) шага дискретизации  вместо непрерывной переменной  в выражении импульсной характеристики. Этим обеспечивается равенство отсчетов дискретной импульсной характеристики  значениям непрерывной импульсной характеристики в моменты времени .

5.   Найти Z-преобразование функции  и получить системную (передаточную) функцию БИХ-фильтра  в форме отношения полиномов от переменной .

Примечание. Поскольку  при дискретизации непрерывной импульсной характеристики частотная характеристика цифрового фильтра оказывается умноженной на коэффициент , многие разработчики фильтров считают необходимым включить множитель  в выражение для .  Это позволяет  сделать коэффициент передачи цифрового фильтра равным коэффициенту передачи прототипа. Некоторые авторы предпочитают вводить множитель  в дискретную импульсную характеристику, то есть записать

            Окончательно для получаем:

,          (16.2)

и разностное уравнение в общей форме записывается как:

                                                      (16.3)

Вариант 2 метода инвариантного преобразования импульсной характеристики использует другой подход. Он разбивает математически аналоговый фильтр-прототип на несколько фильтров с одним полюсом, а затем аппроксимирует каждый из этих фильтров однополюсным цифровым фильтром. Набор из  однополюсных фильтров затем аналитически объединяется в БИХ-фильтр  порядка, имеющий  полюсов.

При расчете фильтра этим методом необходимо выполнить следующие шаги:

  1.  Получить передаточную функцию  аналогового фильтра-прототипа в форме:

.                                                               (16.4)

  1.  Выбрать подходящую частоту дискретизации  и вычислить период (шаг) дискретизации  .
  2.  Выразить передаточную функцию  в виде суммы однополюсных передаточных функций. Это требует использования разложения (16.4) на простейшие дроби вида:

             (16.5)

где коэффициенты  представляют собой константы; а  -й полюс в точке

на -плоскости. Обозначим -ю однополюсную передаточную функцию как :

.                                                                                              (16.6)

4.   Определить импульсную характеристику аналогового фильтра с передаточной функцией вида (16.5) и записать ее в форме:

                                                                       (16.7)

где  единичная функция.

5.  Аппроксимировать  каждый однополюсный аналоговый фильтр с передаточной  функцией  однополюсным цифровым фильтром с передаточной функцией . Для этого путем дискретизации импульсной характеристики аналогового фильтра получим импульсную характеристику однополюсного цифрового фильтра:

.                                                                                   (16.8)

Найдем Z-преобразование этого однополюсного фильтра:

.                                      (16.9)

Аппроксимация заключается в отображении каждого полюса , расположенного в точке  на -плоскости, в точку  на z-плоскости. Другими словами, аппроксимация осуществляется с помощью отображения, при котором используется замена:

.                                                                                     (16.10)

Результирующая передаточная функция дискретного фильтра является суммой передаточных функций однополюсных дискретных фильтров:

                                                         (16.11)

  1.   Записать  выражение (16.11) в виде отношения двух полиномов от . Поскольку  является суммой простейших дробей, приводя их к общему знаменателю, получим:

.                                                          (16.12)

По аналогии с вариантом 1 из (16.12) вытекает разностное уравнение в обобщенной форме с известными коэффициентами. Разностное уравнение типа (16.3) можно реализовать либо в виде простой формы БИХ-фильтра, либо в виде улучшенных структур, варианты которых рассмотрены в лекции № 14.

Итак, частотная характеристика цифрового фильтра связана с частотной характеристикой аналогового прототипа точно так же, как спектр дискретизированного сигнала связан со спектром аналогового сигнала – периодическим повторением. Отсюда следует, что для того, чтобы частотные характеристики исходного аналогового фильтра и рассчитываемого методом инвариантного преобразования импульсной характеристики цифрового фильтра соответствовали друг другу, необходимо, чтобы полоса пропускания аналогового фильтра находилась в пределах диапазона:  Для выполнения этого условия необходимо до начала преобразования вводить дополнительный фильтр нижних частот, гарантирующий соответствующее ограничение полосы пропускания аналогового фильтра.

Метод билинейного z-преобразования позволяет синтезировать рекурсивный дискретный фильтр по частотной характеристике аналогового прототипа. При его использовании левая половина плоскости всегда отображается внутрь единичной окружности на плоскости, поэтому синтез по устойчивому аналоговому прототипу дает гарантированно устойчивый дискретный фильтр.

При реализации этого метода используют простое конформное отображение плоскости в плоскость, сохраняющее удобную алгебраическую форму преобразования. Оно основано на замене:

.                                                                     (16.13)

Можно показать, что частотные характеристики аналогового  и дискретного  фильтров связаны друг с другом лишь трансформацией частотной оси:

                                                         (16.14)

На низких частотах, когда, тангенс примерно равен своему аргументу и

. Поэтому в области низких частот частотные характеристики аналогового и дискретного фильтров почти совпадают.

           

PAGE  1


 

А также другие работы, которые могут Вас заинтересовать

25066. Наука як феноменом культури 39.5 KB
  Поняття наука і культура не тотожні. Поняття культура значно ширше адже наука не враховує всіх сфер матеріальної і духовної культури наприклад таких як мистецтво моральні теорії і погляди. Наука є феноменом культури.
25067. Различие между Востоком и Западом 36 KB
  О чертах отличающих культуры Запада и Востока друг от друга можно говорить лишь с большей или меньшей долей условности. Вовторых восточная культура неоднородна в гораздо большей степени чем западная; она охватывает три разных культурных мира китайский индобуддийский арабомусульманский в которых доминируют различные религии тогда как культура Запада объединяется одной религией христианством. Причины обусловившие особенности культур Запада и Востока связаны с разницей климатических исторических и социальноэкономических...
25068. Реформація в освіті 46.5 KB
  Одним з основних завдань реформування освіти незалежна держава визначила відродження і подальшу розбудову національної системи освіти її орієнтацію на задоволення потреб народу України національнокультурних та національноосвітніх прав і запитів усіх громадян незалежно від їх етнічної приналежності. Концептуальні засади реформи освіти в Україні були визначені державною національною програмою Освіта Україна ХХІ століття спрямованою на досягнення якісно нового стану навчання і виховання українських громадян що відповідатиме сучасному...
25069. Елітарна культура 33 KB
  Для масової культури характерним є загальнодоступність легкість сприйняття спрощеність розважальність.
25070. Основные культурологические школы 43.5 KB
  Малиновский; Ее главная черта стремление подчеркнуть биологическую обусловленность культуры значительно преувеличивая ее.Парсонс; Она объединяет тех ученых которые ищут истоки и объяснение культуры не в истории и самопроизвольном божественном развитии человеческого духа не в психике и не в биологической предыстории человечества а в его общественной природе и организации. Веселовский объясняла сходство материальной и духовной культуры. Основные культурологические концепции: Философия Гегеля как теория культуры...
25071. Мифология 36.5 KB
  mutos сказание сказание и logos слово рассказ совокупность мифов созданных какимлибо народом или разными народами; система знаний о мире основанная на вере в сверхъестественное; научная дисциплина изучающая мифы их особенности элементы. Современные мифы вбирают в себя элементы заимствованные из других культурных форм в том числе и из науки. В современной культуре имеют хождение мифы различного вида: Старые мифы дожившие до наших дней преданья старины глубокой рассказы о духах вроде лешего и домового о колдовстве и...
25072. Основні функції культури 32.5 KB
  Адаптаційна дає можливість кожному індивідууму який включається в процес функціонування і розвитку прилаштовуватися до існуючих в суспільстві оцінок і форм поведінки. Аксіологічна ціннісна дає можливість виробити ціннісні орієнтації людини коригувати норми поведінки та ідентифікувати себе у суспільстві. Нормативна відпрацьовування і поширення відповідних норм поведінки які суспільство диктує людині у відповідності з якими формується образ життя людей їх установки й ціннісні орієнтації способи поведінки.
25073. Християнство 52 KB
  Основу християнства становить учення про Боголюдину Ісуса Христа який щоб звільнити людей від первородного гріха прийняв смерть через розп'яття на хресті але воскрес вознісся на небо і обіцяв повернутись на землю вдруге У Судний день для того щоб судити живих і мертвих; за результатами Божого суду одних направити до Раю а інших у пекло; Християнство зародилося на сході Римської імперії території сучасного Ізраїлю в Палестині в I ст. Мудра віра Ісуса привертала до Нього кращих людей ізраїльського народу. завіт договір назва...
25074. Исла́м 51 KB
  Слово ислам переводится как предание себя Богу покорность подчинение законам Аллаха. В арабском языке слово ислам отглагольное существительное образованное от глагола который означает быть благополучным спасаться сохраняться быть свободным. В шариатской терминологии ислам это полное абсолютное единобожие подчинение Аллаху Его приказам и запретам отстранение от многобожия. Приверженцев ислама называют мусульманами.