19108

Спектральные характеристики непериодических сигналов

Практическая работа

Физика

Лекция № 4. Спектральные характеристики непериодических сигналов. Теория спектрального представления непериодических импульсных сигналов основанная на прямом и обратном интегральных преобразованиях Фурье позволяет осуществлять анализ прохождения сигналов чер

Русский

2013-07-11

191.5 KB

23 чел.

Лекция № 4.  Спектральные характеристики непериодических сигналов.

Теория спектрального представления непериодических (импульсных) сигналов, основанная на прямом и обратном интегральных преобразованиях Фурье,  позволяет осуществлять анализ прохождения сигналов через широкий класс функциональных элементов измерительных систем:  электрических цепей,  различного рода преобразователей, функциональных блоков.  Если функция , отображающая реальный сигнал, абсолютно интегрируема, то ее спектральная плотность определяется интегралом:

.                                                                                 (4.1)

Величину  называют комплексной спектральной плотностью или спектральной характеристикой. Она имеет размерность [амплитуда/частота]. Используя обратное преобразование Фурье для сигнала, можно записать:

.                                                                             (4.2)

Как комплексная величина спектральная плотность может быть записана в виде модуля и аргумента:

,                                                            (4.3)

где модуль  называют спектральной плотностью амплитуд или просто амплитудным спектром непериодического сигнала, а аргумент спектральной плотности – фазовым спектром этого сигнала.

Модуль и аргумент спектральной плотности могут быть вычислены по формулам:

,                                                                                 (4.4)

 ,       где                                                                     (4.5)

,                                                                                      (4.6)

.                                                                                       (4.7)

Как и в случае ряда Фурье,   является четной функцией частоты, а  – нечетной функцией частоты. Так как составляющие расположены на всех частотах, то спектр непериодического сигнала является непрерывным или сплошным. 

На основании формулы (4.3) нетрудно привести комплексную форму интегрального преобразования Фурье (4.2) к тригонометрической форме:

.                                                           (4.8)

Преимущество тригонометрической формы записи Фурье-преобразования заключается в возможности некоторого физического толкования с использованием идеализаций, не очень далеких от реальности. Следует отметить, что условие абсолютной интегрируемости сигнала , т.е. сходимости интеграла ,  сужает класс  сигналов, допустимых к Фурье-анализу. Так, в классическом смысле невозможно говорить о спектральной плотности таких сигналов, как единичная функция 1(t), гармонический сигнал  и некоторые другие, т.к. они не соответствуют условию абсолютной интегрируемости.

Спектральная плотность прямоугольного видеоимпульса

Найдем спектральные характеристики (амплитудную и фазовую) одиночного прямоугольного импульса, описываемого выражением:

                                                                (4.9)

Графическое изображение импульса представлено на рисунке.

                                                 

Применяя формулу (4.1), находим спектральную плотность:

                     (4.10)

Заметим, что произведение , равное площади импульса, определяет значение спектральной плотности импульса при , т.е. . Более того, это выражение справедливо для импульсов произвольной формы:

.                                                                           (4.11)

Спектр амплитуд одиночного прямоугольного импульса представляет из себя модуль выражения (4.10):

.                                                                            (4.12)

Графически спектр амплитуд этого импульса представлен на рисунке (приведена правая часть спектральной характеристики, соответствующая положительным значениям ).

Из рисунка и анализа соотношения (4.12) следует, что при увеличении длительности импульса  расстояние между нулями функции  сокращается, что равносильно сужению спектра амплитуд. При этом значение  при   возрастает. При укорачивании (сжатии) импульса  расстояние между нулями функции , напротив, увеличивается (спектр расширяется), а значение  убывает. В пределе при   значение  стремится к бесконечности, а модуль спектральной плотности, бесконечно малый по величине при постоянном значении , становится равномерным в полосе частот от   до . Очевидно также, что амплитудный спектр прямоугольного импульса имеет ту же форму, что и огибающая периодической последовательности таких импульсов.

Фазовая характеристика спектра прямоугольного импульса (спектр фаз) описывается выражением:,  Очевидно,  что каждое изменение знака  учитывается изменением фазы на .

Распределение энергии в спектре непериодического сигнала.

Рассмотрим импульсный сигнал , физическим представлением которого будем считать электрическое напряжение на резисторе номиналом 1 Ом. Тогда энергия, выделяемая на этом резисторе равна:

.                                                                                                 (4.13)

В предположении, что интеграл (4.13) сходится, выразим энергию через модуль спектральной характеристики  этого сигнала . Для этого квадрат модуля запишем в виде:  ,  где  – функция, комплексно-сопряженная спектральной характеристике  сигнала .  Тогда

.

После изменения последовательности интегрирования и использования обратного преобразования Фурье получим:

.                                                                         (4.14)

Окончательно имеем

.                                              (4.15)

Соотношение (4.15) известно как равенство Парсеваля. Из него следует, что каждое из бесконечно малых слагаемых , соответствующих бесконечно малым участкам спектра, характеризует энергию, приходящуюся на спектральные составляющие сигнала, сосредоточенные в полосе частот от  до .

Соотношение (4.15) может быть записано в виде:

,                                                                             (4.16)

где   называют спектральной плотностью энергии сигнала, или энергетическим спектром. Изучение сигнала с помощью его энергетического спектра неизбежно приводит к потере информации, которая заключена в фазовом спектре сигнала, поскольку энергетический спектр есть квадрат модуля спектральной плотности и не зависит от ее аргумента. Тем не менее понятие энергетического спектра оказывается полезным при получении различных оценок, связанных с шириной спектра сигнала.  

3

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  


 

А также другие работы, которые могут Вас заинтересовать

46690. Поняття про фразеологію. Типи фразеологізмів 26 KB
  Фразеологізм це стійке сполучення слів побудоване як словосполучення чи речення і характеризується злитістю компонентів цілісністю значення та автоматичною відтворюваністю в мовленні. За ступенем злитості значень слів які входять до фразеологізму їх поділяють на фразеологічні зрощення стійке сполучення слів значення якого не випливає зі значень окремих слів точити ляси піймати облизня; фразеологічні єдності стійке сполучення слів про значення якого можна здогадуватися із значень окремих слів як в рот води набрати;...
46691. Синтаксична норма. Однорідні члени речення, дієприкметникові та дієприслівникові звороти 26 KB
  Однорідні члени речення дієприкметникові та дієприслівникові звороти. Однорідні члени речення це такі члени речення які виконують однакову синтаксичну функцію відносяться до одного й того самого члена речення і поєднуються між собою сурядним зв’язком. Однорідні члени речення рівноправні і не залежать одне від одного. Однорідними можуть бути будьякі і головні і другорядні члени речення.
46694. ФИРМА В ЭКОНОМИКЕ ОТРАСЛЕВЫХ РЫНКОВ 26.48 KB
  Отличие фирмы от других хозяйствующих субъектов состоит в том что она: представляет собой достаточно крупную и организационно оформленную единицу; является самостоятельным юридически независимым экономическим агентом; выполняет особую функцию в экономике: покупает ресурсы с целью производства товаров и услуг. Фирма служит инструментом распределения ресурсов в экономике между альтернативными возможностями их использования; существование и рост фирмы...
46695. Drogensucht 26.5 KB
  Viele Jugendliche sind heutzutage drogen- und alkoholabhängig. Sehr früh beginnen sie zu rauchen und Alkohol zu trinken. Alkohol, Nikotin und Medikamente nennt man weiche Drogen. Grundsätzlich ist diese Unterscheidung irreführend. Alle Drogen sind Stoffe, die unser Bewusstsein verändern. Sie tun dies unterschiedlich stark, aber alle sind schädlich und machen fast immer abhängig
46696. Налогоплательщики и налоги 26.5 KB
  Налоговая база определяется как кадастровая стоимость земельных участков признаваемых объектом налогообложения Налоговым периодом признается календарный год. Налоговые ставки устанавливаются нормативными правовыми актами представительных органов муниципальных образований законами городов федерального значения Москвы и СанктПетербурга и не могут превышать: 1 03 процента в отношении земельных участков: отнесенных к землям сельскохозяйственного назначения или к землям в составе зон сельскохозяйственного использования в поселениях и...
46697. The model of immediate constituents 26.5 KB
  The model of immediate constituents is based on the group-parsing of the sentence which has been developed by traditional grammar together with the sentence-part parsing scheme. It consists in dividing the whole of the sentence into two groups: that of the subject and that of the predicate, which, in their turn, are divided into their sub-group constituents according to the successive subordinative order of the latter