19108

Спектральные характеристики непериодических сигналов

Практическая работа

Физика

Лекция № 4. Спектральные характеристики непериодических сигналов. Теория спектрального представления непериодических импульсных сигналов основанная на прямом и обратном интегральных преобразованиях Фурье позволяет осуществлять анализ прохождения сигналов чер

Русский

2013-07-11

191.5 KB

26 чел.

Лекция № 4.  Спектральные характеристики непериодических сигналов.

Теория спектрального представления непериодических (импульсных) сигналов, основанная на прямом и обратном интегральных преобразованиях Фурье,  позволяет осуществлять анализ прохождения сигналов через широкий класс функциональных элементов измерительных систем:  электрических цепей,  различного рода преобразователей, функциональных блоков.  Если функция , отображающая реальный сигнал, абсолютно интегрируема, то ее спектральная плотность определяется интегралом:

.                                                                                 (4.1)

Величину  называют комплексной спектральной плотностью или спектральной характеристикой. Она имеет размерность [амплитуда/частота]. Используя обратное преобразование Фурье для сигнала, можно записать:

.                                                                             (4.2)

Как комплексная величина спектральная плотность может быть записана в виде модуля и аргумента:

,                                                            (4.3)

где модуль  называют спектральной плотностью амплитуд или просто амплитудным спектром непериодического сигнала, а аргумент спектральной плотности – фазовым спектром этого сигнала.

Модуль и аргумент спектральной плотности могут быть вычислены по формулам:

,                                                                                 (4.4)

 ,       где                                                                     (4.5)

,                                                                                      (4.6)

.                                                                                       (4.7)

Как и в случае ряда Фурье,   является четной функцией частоты, а  – нечетной функцией частоты. Так как составляющие расположены на всех частотах, то спектр непериодического сигнала является непрерывным или сплошным. 

На основании формулы (4.3) нетрудно привести комплексную форму интегрального преобразования Фурье (4.2) к тригонометрической форме:

.                                                           (4.8)

Преимущество тригонометрической формы записи Фурье-преобразования заключается в возможности некоторого физического толкования с использованием идеализаций, не очень далеких от реальности. Следует отметить, что условие абсолютной интегрируемости сигнала , т.е. сходимости интеграла ,  сужает класс  сигналов, допустимых к Фурье-анализу. Так, в классическом смысле невозможно говорить о спектральной плотности таких сигналов, как единичная функция 1(t), гармонический сигнал  и некоторые другие, т.к. они не соответствуют условию абсолютной интегрируемости.

Спектральная плотность прямоугольного видеоимпульса

Найдем спектральные характеристики (амплитудную и фазовую) одиночного прямоугольного импульса, описываемого выражением:

                                                                (4.9)

Графическое изображение импульса представлено на рисунке.

                                                 

Применяя формулу (4.1), находим спектральную плотность:

                     (4.10)

Заметим, что произведение , равное площади импульса, определяет значение спектральной плотности импульса при , т.е. . Более того, это выражение справедливо для импульсов произвольной формы:

.                                                                           (4.11)

Спектр амплитуд одиночного прямоугольного импульса представляет из себя модуль выражения (4.10):

.                                                                            (4.12)

Графически спектр амплитуд этого импульса представлен на рисунке (приведена правая часть спектральной характеристики, соответствующая положительным значениям ).

Из рисунка и анализа соотношения (4.12) следует, что при увеличении длительности импульса  расстояние между нулями функции  сокращается, что равносильно сужению спектра амплитуд. При этом значение  при   возрастает. При укорачивании (сжатии) импульса  расстояние между нулями функции , напротив, увеличивается (спектр расширяется), а значение  убывает. В пределе при   значение  стремится к бесконечности, а модуль спектральной плотности, бесконечно малый по величине при постоянном значении , становится равномерным в полосе частот от   до . Очевидно также, что амплитудный спектр прямоугольного импульса имеет ту же форму, что и огибающая периодической последовательности таких импульсов.

Фазовая характеристика спектра прямоугольного импульса (спектр фаз) описывается выражением:,  Очевидно,  что каждое изменение знака  учитывается изменением фазы на .

Распределение энергии в спектре непериодического сигнала.

Рассмотрим импульсный сигнал , физическим представлением которого будем считать электрическое напряжение на резисторе номиналом 1 Ом. Тогда энергия, выделяемая на этом резисторе равна:

.                                                                                                 (4.13)

В предположении, что интеграл (4.13) сходится, выразим энергию через модуль спектральной характеристики  этого сигнала . Для этого квадрат модуля запишем в виде:  ,  где  – функция, комплексно-сопряженная спектральной характеристике  сигнала .  Тогда

.

После изменения последовательности интегрирования и использования обратного преобразования Фурье получим:

.                                                                         (4.14)

Окончательно имеем

.                                              (4.15)

Соотношение (4.15) известно как равенство Парсеваля. Из него следует, что каждое из бесконечно малых слагаемых , соответствующих бесконечно малым участкам спектра, характеризует энергию, приходящуюся на спектральные составляющие сигнала, сосредоточенные в полосе частот от  до .

Соотношение (4.15) может быть записано в виде:

,                                                                             (4.16)

где   называют спектральной плотностью энергии сигнала, или энергетическим спектром. Изучение сигнала с помощью его энергетического спектра неизбежно приводит к потере информации, которая заключена в фазовом спектре сигнала, поскольку энергетический спектр есть квадрат модуля спектральной плотности и не зависит от ее аргумента. Тем не менее понятие энергетического спектра оказывается полезным при получении различных оценок, связанных с шириной спектра сигнала.  

3

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  


 

А также другие работы, которые могут Вас заинтересовать

54169. Новорічна математична ялинка 286.5 KB
  Мета: перевірити якість знань і вмінь учнів з теми; зацікавити математикою; розвивати логічне мислення культуру математичних записів, мовлення. Тип уроку: урок узагальнення та систематизації знань.
54170. Урок-казка. Чарівні слова. Розвязування рівнянь 165 KB
  Таблиці плакати до казки про ІванаЦаревича і Чахлика Невмирущого. Клас розбивається на 3 команди і вибирається ІванЦаревич. Там під дубом вчений кіт Русалонька за принцем плаче КоникГорбоконик на підмогу скаче Привид Кентервільський всіх лякає ІванЦаревич Змія перемагає. Учитель: В деякому царстві живбув ІванЦаревич.
54171. Особливості навчання математиці дітей із затримкою психічного розвитку в умовах якісної освіти 450.5 KB
  Поданий матеріал може бути використаний вчителями математики, які працюють як в спеціалізованих класах корекції для дітей із затримкою психічного розвитку, так і звичайних класах загальноосвітньої школи. В посібнику відображені питання класифікації дітей із затримкою психічного розвитку, зазначені причини затримки розвитку, подана характеристика дітей даної категорії та визначені особливості їх навчальної діяльності на уроках математики.
54172. Применение свойств действий при вычислениях и решении уравнений в 5-м и 6-м классах 151.5 KB
  На усвоение этих свойств достаточно на такой ранней стадии устные упражнения с дальнейшим переходом к письменным упражнениям, развивая у учеников умение и навыки работы с числовыми выражениями, решении уравнений без использования правил нахождения неизвестного компонента действия: развивая у учеников творческий подход к решению математических задач.
54173. Система практичних завдань при вивченні математики у 5-6 класах 199.5 KB
  Звичайно в шкільних підручниках є задачі-розрахунки, в основу яких покладено залежності між величинами, які часто зустрічаються в житті, між компонентами руху; між ціною, кількістю і вартістю; між продуктивністю праці, часом роботи і одержаною продукцією; розрахунки часу; знаходження периметрів, площ; обчислення витрат різних матеріалів тощо.
54174. Система дидактичних умов пізнавальної діяльності учнів на уроках математики 119.5 KB
  Система дидактичних розумів розвитку пізнавальної діяльності учнів на уроках математики. Розвиток пізнавального інтересу учнів. Прийоми активізації пізнавальної діяльності учнів на уроках математики. Інтерактивні технології навчання спосіб створення умов залучення учнів до пізнавальної діяльності.
54175. Первісна. Інтеграл. Застосування інтегралу при розвязуванні задач економічного змісту 690.5 KB
  Група студентів ділиться на чотири команди. На першому етапі заняття проводиться узагальнення та систематизація знань учнів з теми, розглядаються учнівські презентації про виникнення інтегралу та його використання. На другому етапі – пояснення нового матеріалу, потім його закріплення в вигляді створення проектів кожною підгрупою.
54176. Развитие культуры в условиях нижнего и среднего палеолита 33 KB
  Одним из важнейших способов выживания человека в первобытную эпоху стал беспрерывный процесс познания окружающего мира. На раннем этапе жизни человека предметом познания и осмысления является природа, от которой напрямую зависит жизнь человеческого общества.
54177. Новые информационные технологии в профильном обучении математики на примере темы „Многогранники” в 11 классе 827.5 KB
  Рассмотрение различных случаев взаимного расположения диагоналей ребер и граней многогранника использование для этого моделей и готовых чертежей способствует развитию пространственных представлений учащихся их интуиции Рис. Особо подчеркиваются характеристические свойства призмы.