19109

Спектральный анализ непериодических сигналов

Практическая работа

Физика

Лекция № 5. Спектральный анализ непериодических сигналов Для практических приложений является важным установление связи между преобразованием сигнала и соответствующим этому преобразованию изменением спектральных характеристик. Спектральная плотность сигнала...

Русский

2013-07-11

246 KB

54 чел.

Лекция № 5.  

Спектральный анализ непериодических сигналов

Для практических приложений является важным установление связи между преобразованием сигнала и соответствующим этому преобразованию изменением спектральных характеристик.

Спектральная плотность сигнала, смещенного во времени.

Предположим, что сигнал  произвольной формы, существующий на интервале от  до , имеет спектральную плотность . Найдем спектральную плотность этого же сигнала при условии его задержки на интервал , например преобразователем, называемым  линией задержки. Функция времени задержанного сигнала при сохранении его формы запишется в виде:

                                                                                           (5.1)

Спектральная плотность задержанного сигнала очевидно  имеет вид:

                                              (5.2)

Вводя новую переменную интегрирования , получим:

=.               (5.3)

Из этого соотношения видно, что задержка во времени сигнала  на интервал  приводит к изменению фазовой характеристики спектра   (спектра фаз) на величину . Очевидно, что в общем случае при сдвиге сигнала во времени на величину   его фазовый спектр изменится на величину  .   Спектр амплитуд этого сигнала (модуль спектральной плотности) от положения сигнала на временной оси не зависит.

Спектральная плотность сигнала, сжатого во времени.

Пусть сигнал  длительностью  подвергся сжатию во времени в соответствии с рисунком:

Новый сжатый сигнал  связан с исходным сигналом соотношением:

,                                                                                     (5.4)

Длительность сжатого сигнала очевидно равна .  Определим спектральную плотность сжатого сигнала  :

                                                   (5.5)

Вводя новую переменную интегрирования    , получаем:

                                             (5.6)

Интеграл в правой части выражения (5.6)  есть не что иное, как спектральная плотность исходного сигнала  при частоте  , т.е.:

.                                                                                  (5.7)

Итак, при сжатии сигнала в  раз на временной оси имеем:

  •  уменьшение модуля спектральной плотности в  раз;
  •  расширение во столько же раз его спектральных составляющих на оси частот.

Очевидно, при расширении исходного сигнала во времени  (т.е. при ) имеют место обратные процессы: сужение спектра и увеличение модуля спектральной плотности.

Можно также показать, что длительность сигнала и ширина его спектра амплитуд не могут быть одновременно ограничены конечными интервалами: если длительность сигнала ограничена, то спектр его неограничен, и, наоборот, сигнал с ограниченным спектром длится бесконечно долго. Говорят, что ширина спектра и длительность импульса связаны соотношением неопределенности: ,  где  – длительность импульса, а  – ширина спектра (практическая ширина),  – постоянная, зависящая от формы импульса (в первом приближении принимают ).

Спектральная плотность на выходе сумматора сигналов.

Преобразование Фурье, определяющее спектральную плотность заданного сигнала, является линейным преобразованием. Если на вход сумматора подать некоторую совокупность сигналов   …, обладающих спектральными плотностями соответственно , , , …, то взвешенной сумме сигналов на выходе сумматора   будет соответствовать спектральная плотность:

,                                          (5.8)

где  – произвольные числовые коэффициенты. Для доказательства этого утверждения следует подставить сумму сигналов в формулу для прямого преобразования Фурье.

Спектральная плотность продифференцированного сигнала.

Пусть сигнал  и его спектральная плотность  заданы. Подадим сигнал на вход линейного устройства, осуществляющего дифференцирование сигнала. Сигнал на выходе дифференцирующего устройства  будет иметь вид:

,                                                                                            (5.9)

где  – константа преобразования.

Используя свойство преобразования Фурье, часто записываемое в виде:

,                                                                              (5.10)

где символом  обозначено прямое преобразование Фурье над функцией ,

получим:

                                                                                (5.11)

Итак, дифференцирование сигнала по времени эквивалентно алгебраической операции умножения спектральной плотности на множитель , часто называемым оператором дифференцирования в частотной области. Отметим, что при дифференцировании скорость изменения сигнала во времени возрастает, а сам сигнал укорачивается. Следовательно, модуль спектра производной имеет большие значения в области высоких частот по сравнению с модулем исходного сигнала.

Спектральная плотность сигнала на выходе интегратора.   Во многих измерительных системах находят применение так называемые интеграторы – преобразователи, выходной сигнал которых пропорционален интегралу от входного воздействия :

,  – константа преобразования.                              (5.12)

По аналогии с операцией дифференцирования нетрудно  найти формулу связи спектральных плотностей сигналов на входе и выходе интегратора:

.                                                                                       (5.13)

Так как модуль знаменателя растет линейно с увеличением частоты, это свидетельствует о том, что рассматриваемый интегратор действует подобно фильтру нижних частот, ослабляя высокочастотные спектральные составляющие входного сигнала.

Практическая ширина спектра сигнала.

Реальные сигналы всегда ограничены во времени, следовательно, их  амплитудный спектр теоретически неограничен. Однако реальные сигналы генерируются и передаются устройствами, содержащими инерционные элементы (например, емкости и индуктивности в электрических цепях и прочих  преобразователях). Поэтому они не могут содержать гармонических составляющих сколь угодно высоких частот.

В связи с этим возникает необходимость ввести в рассмотрение модели сигналов, обладающих как конечной длительностью, так и ограниченным спектром. При этом в соответствии с каким-либо критерием дополнительно ограничивается либо ширина спектра, либо длительность сигнала, либо оба параметра одновременно.

Чаще всего в качестве такого критерия используется энергетический критерий, согласно которому практическую ширину амплитудного спектра выбирают так, чтобы в нем была сосредоточена подавляющая часть энергии сигнала.  Для этого используют равенство Парсеваля, позволяющее определить энергию сигнала  либо через функцию, описывающую реальный сигнал длительностью ,  либо через модуль ее спектральной плотности :

.                                            (5.14)

Практическая ширина спектра сигнала, сосредоточенная в диапазоне частот от 0 до некоторого значения ,  определяется из соотношения:

.                                                                (5.15)

Здесь  – граничная частота, определяющая верхнее значение спектра сигнала;  – коэффициент, достаточно близкий к 1 (на практике его значение выбирают в интервале от 0.9 до 0,998 в зависимости от требований к качеству воспроизведения сигнала). Значение  означает, что в полосе частот от  до  содержится 99 % энергии сигнала. Значение граничной частоты находят, решая трансцендентное уравнение (5.15).

Практическая ширина спектра экспоненциального импульса.

Задача: определить граничную частоту спектра сигнала вида      

   ,                                                                                                 (5.16)

ориентируясь на практическую ширину спектра сигнала с

Принять следующие значения:  мВ,   1/сек.

Сигналы такого типа, называемые экспоненциальными видеоимпульсами, генерируются многими датчиками (например, полупроводниковыми детекторами при регистрации параметров ионизирующих излучений) . Условие  обеспечивает достаточно быстрое (экспоненциальное) уменьшение значений сигнала с ростом времени.

Спектральная плотность такого сигнала равна:

                                        (5.17)

Подставляя пределы, получаем:

   .                                                                                      (5.18)

Спектр амплитуд такого импульса равен:                                (5.19)

Трансцендентное уравнение, решение которого позволяет определить , имеет вид:

     .                                                            (5.20)

Так как      ,

получаем:  . Отсюда .

Практическую длительность подобных импульсов в измерительной технике обычно определяют из условия десятикратного уменьшения  уровня сигнала:

.  Отсюда .

PAGE  1


EMBED Equation.DSMT4  

EMBED Equation.DSMT4  


 

А также другие работы, которые могут Вас заинтересовать

20511. Пошук даних за допомогою мови SQL 25 KB
  Пошук даних за допомогою мови SQL Пошук здійснюється командою SELECTSELECT FROM table_name WHERE выражение [order by field_name [desc][asc]] Ця команда шукає всі записи в таблиці table_name які задовольняють висловом вираз.
20512. Реляційна алгебра 19.16 KB
  нові імена атрибутів[Правити] Об'єднанняВідношення з тим же заголовком що і у сумісних за типом відносин A і B і тілом що складається з кортежів які належать або A або B або обом відносинам.Синтаксис:A UNION B[Правити] ПеретинВідношення з тим же заголовком що й у відносин A і B і тілом що складається з кортежів які належать одночасно обом відносин A і B.Синтаксис:A INTERSECT B[Правити] ВідніманняВідношення з тим же заголовком що і у сумісних за типом відносин A і B і тілом що складається з кортежів що належать відношенню A і не...
20513. Розбивання квадратних матриць на клітки другим способом 66.5 KB
  Матриці мають довготривалу історію застосування при розв'язуванні систем лінійних рівнянь. Поняття матриці яке вже не було похідним від поняття визначник з'явилось тільки в 1858 році в праці англійського математика Артура Келі. Термін матриця першим став вживатиДжеймс Джозеф Сильвестр який розглядав матрицю як обєкт що породжує сімейство мінорів визначників менших матриць утворених викреслюванням рядків та стовпців з початкової матриці. LU розклад матриці представлення матриці у вигляді добутку нижньої трикутної матриці та...
20514. Розбивання квадратних матриць на клітки першим способом 41.5 KB
  Одним з найважливіших завдань є завдання знаходження вирішення систем лінійних рівнянь алгебри. коефіцієнтів Х шукане рішення записане у вигляді стовпця з n елементів F стовпець вільних членів з mелементів. Якщо A прямокутна m ´ n матріца рангу до те рішення може не існувати або бути не єдиним. В разі неіснування рішення має сенс узагальнене рішення що дає мінімум сумі квадратів нев'язок див.
20515. Розміщення без повторень 18.84 KB
  формула для знаходження кількості розміщень без повторень: Перестановки без повторень комбінаторні сполуки які можуть відрізнятися одинвід одного лише порядком входять до них елементів.формула для знаходження кількості перестановок без повторень: .
20516. Розширення реального часу на DFD 37.5 KB
  Таким чином будьякий Webпроект сайтвізитка електронна вітрина електронний магазин форум електро нний журнал пошукова система тощо є інформаційною системою яка функціонує у глобальному інформаційному середовищі World Wide Web. Надалі їх будемо називати Webсистемами [6]. Оскільки життєвий цикл інформаційної системи по чинається з етапів системного аналізу та проектування [3] то й Webсистеми не можуть бути винятком. Для Webсистем особливо важливим є урахування таких інформаційних особливостей як залежність від часу.
20517. Словник даних. БНФ-нотація 41 KB
  БНФнотація. БНФнотация позволяет формально описать расщепление объединение потоков. Это определение может быть следующим: X=ABC; Y=AB; Z=BC Такие определения хранятся в словаре данных в так называемой БНФстатье. БНФстатья используется для описания компонент данных в потоках данных и в хранилищах.
20518. Специфікації керування. Побудова діаграм переходів станів. Символи STD. Таблиці і матриці переходів 30 KB
  Символи STD. Діаграми переходів станів STD відносять до групи специфікацій управління які призначені для моделювання і документування аспектів системи повязаних із часом або реакцією на події. STD подають процес функціонування системи як послідовність переходів з одного стану до іншого. До складу STD входять такі структурні одиниці:Стан може визначатися як стійкі внутрішні умови системи.
20519. Шаблони функцій (передача типу в функцію у вигляді параметру). Перевизначення шаблонів функцій. Передача у шаблони додаткових аргументів 27.5 KB
  Шаблони механізм C який дозволяє створювати узагальнені функції і класи які працюють з типами даних які передаються в параметрі. Можна наприклад створити функцію яка сортує масив цілих чисел а можна створити шаблон функції який буде сортувати масиви будьяких даних над якими задані операції порівняння і присвоєння. Шаблон функції виглядає так: template class Ідентифікатор_типу Тип_результату Назва_функціїСписок_параметрів { Тіло функції } Параметр Ідентифікатор_типу задає тип з яким працює функція. Всюди в тілі і заголовку...