19114

Пьезоэлектрические преобразователи

Практическая работа

Физика

Лекция №10. Пьезоэлектрические преобразователи Пьезопреобразователи – электромеханические преобразователи принцип действия которых основан на пьезоэлектрическом эффекте – явлении возникновения электрической поляризации под действием механических напряжений. Е

Русский

2013-07-11

246 KB

93 чел.

Лекция №10.

Пьезоэлектрические преобразователи

Пьезопреобразователи – электромеханические преобразователи, принцип действия которых основан на пьезоэлектрическом эффекте – явлении возникновения электрической поляризации под действием механических напряжений. Если пьезоэлектрическую пластинку с нанесенными электродами (пьезоэлемент) подвергнуть действию  механических напряжений (сжатию, растяжению, сдвигу), то на ее поверхности появятся электрические заряды за счет поляризации (прямой пьезоэффект или эффект Кюри). Приложение электрического напряжения к электродам вызывает механическую деформацию пьезоэлемента (обратный пьезоэффект, эффект Джоуля).

Для изготовления пьезопреобразователей используют следующие классы анизотропных материалов:

  •  анизотропные кристаллы естественного происхождения: кварц, турмалин;
  •  синтетические кристаллы: сегнетова соль, ниобат лития;
  •  поляризованные  поликристаллические сегнетоэлектрики, получаемые методами керамического производства (пьезокерамика): титанат бария , цирконат-титанат свинца  – пьезокерамика ЦТС.

Появились пьезополимерные (обычно пленочные) преобразователи, которые могут быть нанесены на поверхность любого профиля. Наиболее перспективные из них – полимерные пленки ПВДФ.

Пьезоэлектрические свойства преобразователей характеризуют константами, связывающими механические величины:  напряжение  и деформацию  с электрическими: напряженностью электрического поля  и электрической индукцией . Система уравнений,  описывающих работу пьезопреобразователя, должна включать: уравнение движения упругой среды; уравнения, связывающие механические напряжения и деформации; уравнения для прямого и обратного пьезоэффектов.

Так как все пьезоэлектрики существенно анизотропны, их свойства зависят от направления относительно кристаллических осей или осей поляризации, поэтому для описания свойств пьезоэлектрических материалов используют тензорные представления теории электроупругости. Так, компонента тензора механических напряжений  есть -я компонента () силы , действующей на единицу поверхности площадью , перпендикулярной оси , в соответствии с соотношением: . Например, на единичную площадку, перпендикулярную оси  (ось 1), в общем случае могут действовать нормальное напряжение  и касательные (сдвиговые) напряжения  и .

Точно так же компоненты тензора деформаций с совпадающими индексами соответствуют деформациям растяжения – сжатия, а с различающимися индексами – сдвиговым деформациям. Таким образом, тензор деформаций, как и тензор напряжений, характеризуется девятью компонентами, представимыми в форме матрицы:

  ,                                                                        (10.1)

Вторая  запись матрицы, учитывающая равенство компонент ,  более удобна, в ней компоненты  соответствуют линейным деформациям растяжения – сжатия, а компоненты  – сдвиговым деформациям. Такая же запись используется и для тензора напряжений, записываемого в виде условного 6-мерного вектора , где первые три компоненты соответствуют нормальным напряжениям, а три вторые – сдвиговым. При такой упрощенной форме представления закон Гука запишется в виде:

,                                                                                                     (10.2)

где коэффициенты  – константы упругости, общее число которых сокращается до 36. Так как реальные кристаллы обладают симметрией и, кроме того, многие коэффициенты равны нулю, количество констант упругости много меньше максимально возможного их числа. Так, у кварца отличны от нуля 6 компонент, у пьезокерамики ЦТС – 5 компонент.

Диэлектрические свойства кристаллов выражаются тензором диэлектрической  проницаемости , связывающим между собой компоненты векторов индукции и напряженности электрического поля в пьезоэлектрике:

,  или в упрощенной записи ,    (=1,2,3).                (10.3)

Отметим, что значения компонент тензора  зависят от условий механического нагружения пьезоэлемента, а именно, находится он при постоянной по объему механической деформации или подвержен постоянному механическому напряжению, в соответствии с чем различают компоненты  и . Так же и величина константы упругости пьезоэлемента зависит от того, каков электрический режим работы преобразователя, и различается для случаев постоянной электрической индукции  и постоянной напряженности электрического поля , что отражается соответствующим индексом при обозначении константы:  и .

Пьезоэлектрические свойства преобразователей характеризуются следующими константами, связывающими электрические и механические величины в прямом и обратном пьезоэффектах:

  1.  Пьезоконстанта  давления , связывающая напряженность электрического поля с величиной механического напряжения :

.                                                             (10.4)

Размерность константы . Индекс  характеризует направление ориентации электрического поля (оно определяется расположением электродов на поверхностях пьезоэлемента),  а индекс  – направление воздействия механических напряжений, причем для нормальных напряжений в направлении пространственных осей используют индексы 1, 2, 3, а для сдвиговых в тех же направлениях – индексы 4, 5, 6. По значению пьезоконстанты можно рассчитать электрическое напряжение на электродах пьезоэлемента при известном силовом воздействии.

  1.  Пьезоконстанта деформации , определяющая величину напряженности электрического поля при единичной деформации пьезоэлемента:

                                                 (10.5)

Размерность .

  1.  Пьезомодуль , дающий величину деформации пьезоэлемента в направлении , вызванной электрическим полем единичной напряженности в направлении :

,                                                    (10.6)

Размерность .

  1.  Пьезоэлектрическая константа , характеризующая механические напряжения в пьезоэлементе при возбуждении в нем электрического поля единичной напряженности (размерность пьезоконстанты ):

                                                     (10.7)

Существуют еще четыре соотношения, из которых могут быть определены константы . Так, пьезомодуль  является коэффициентом пропорциональности между электрической индукцией  и механическим напряжением  в соответствии с уравнением, описывающим прямой пьезоэффект:

 .                                                                                                     (10.8)

Следовательно, пьезомодуль может быть определен из соотношений:

.                                                                                  (10.9)

Индексы при производных означают условия, при которых возможно определение  значений пьезомодуля: – постоянство напряженности электрического поля,  – постоянство механических напряжений. Последнее условие означает, что приведенные соотношения справедливы для квазистатических деформаций, когда  во всем объеме пьезоэлемента. Это соблюдается тогда, когда частота возбуждения значительно меньше низшей резонансной частоты  пьезоэлемента, определяемой исходя из условия возникновения в нем стоячей волны:

  ,                                                                                           (10.10)

где  – характерный размер датчика, например его толщина, на которой укладывается половина длины волны;  – скорость звука в материале преобразователя.  Произведение  называют частотной постоянной, численно равной половине скорости звука в материале преобразователя.

Важнейшей характеристикой пьезоэлектрика является коэффициент электромеханической связи, характеризующий эффективность преобразования электрической энергии в механическую  и обратно. Квадрат  равен отношению электрических напряжений на пьезоприемнике и пьезоизлучателе при условии, что вся механическая энергия, сообщаемая окружающей среде пьезоизлучателем, воспринимается пьезоприемником. Коэффициент электромеханической связи имеет различное значение для разных видов деформирования.

Среди других характеристик пьезопреобразователей укажем:

  •  температуру  Кюри , при нагреве выше которой  пьезоэлектрические свойства преобразователей исчезают;
  •  скорость звука в материале датчика, определяемая константами упругости и плотностью материала;
  •  относительную диэлектрическую проницаемость  материала пьезодатчика, определяющую его собственную емкость. Емкость пьезопластины толщиной  и площадью одной стороны  равна: .

На практике при  использовании соотношений (10.4) – (10.9) следует иметь в виду следующее: пьезоэлементы из разных материалов, имеющие простую геометрическую форму (пластина, диск, стержень), определенным образом ориентированы относительно осей , условно обозначаемых цифрами 1, 2, 3. Пластина кварца, например, вырезается так, что ось   кристалла (ось 1) совпадает с ее толщиной (кварц среза).

Пластина керамики ЦТС изготавливается так, что ось поляризации (ось , ось 3) ориентирована перпендикулярно граням, на которые нанесены электроды, и тоже совпадает с толщиной пластины.  Поэтому при  колебаниях преобразователей вдоль оси  ориентация механических напряжений и электрических полей совпадают. Соответственно совпадают и индексы  и  в соотношениях для пьезоконстант.

Например, прямой пьезоэффект для кварцевой пластины среза, деформируемой по толщине (смотри рисунок), в  статическом режиме описывается выражением:

,                                                                             (10.11)

где  разность потенциалов, возникающая на электродах; напряженность электрического поля в пластине; толщина пластины; механическое напряжение, деформирующее пластину; пьезоэлектрическая константа давления кварца. Поскольку соотношение (10.11) справедливо для режима работы пьезопреобразователя с разомкнутыми электродами (или их замыкании на очень большое сопротивление), то пьезоконстанта давления  характеризует чувствительность пьезоприемника к давлению в режиме холостого хода. Для регистрации сдвиговых напряжений используют кварцевые пластины среза, которые характеризуются значениями констант .

В случае использования для регистрации механических напряжений и деформаций пьезокерамики типа ЦТС  эффективно «работать» будут константы:  . Так, величина деформации в пьезокерамической пластине толщиной  при прикладывании внешней разности потенциалов  определится из выражения:

.                                                                              (10.12)

5


 

А также другие работы, которые могут Вас заинтересовать

39032. Современные технологии доступа к БД 117 KB
  Технология ODBC все еще признается в качестве отраслевого стандарта доступа к базам данных однако также не развивается поэтому разработчики программного обеспечения все чаще обращают свое внимание на современные и возможно более эффективные технологии. С конца 90ых годов и до настоящего времени фирма Microsoft пытается создать универсальную платформу доступа к разнородным хранилищам данных для семейства своих операционных систем Windows. Источниками данных в данном случае могут являться не только SQLсервера Баз Данных но и иные...
39033. Технологии разработки распределенных информационных систем 121.5 KB
  Получить представление о компонентной объектной модели COM. Развитием трехуровневой архитектуры является так называемая многоуровневая nуровневая организация вычислений Multitier computing когда информационная система состоит из большого количества удаленных друг от друга объектов серверов каждый из которых может предоставлять другим объектам клиентам разнообразные информационные услуги. В настоящее время наиболее популярны следующие технологии организации распределенных информационных систем: Технология COM и ее развитие...
39034. Разработка технического задания на разработку ИС 77.5 KB
  Техническое задание ТЗ – это завершающий предпроектную стадию документ который содержит цели и обоснование проектирования а также определяет основные требования к ИС и исходные данные необходимые при разработке. В настоящее время при составлении технического задания обычно руководствуются требованиями следующих ГОСТов: 34.60289 Техническое задание на создание автоматизированной системы – описывает состав и содержание ТЗ которые распространяются на автоматизированную информационную систему в целом в том числе: общесистемные...
39035. Базовые технологии доступа к БД в Borland C++ Builder и их принципы 156 KB
  Указания к выполнению лабораторной работы Современные информационные системы не могут существовать без Баз Данных. По этой причине современные средства разработки приложений должны обеспечивать программиста средствами которые бы: Обеспечивали универсальный механизм доступа к базам данных построенных с использованием различных СУБД; Обеспечивали приемлемый уровень эффективности; Позволяли быстро разрабатывать полнофункциональные приложения для работы с БД любого размера. В Borlnd C Builder предлагается большое количество компонентов...
39036. Использование Borland C++ Builder в качестве средства быстрой разработки приложений 46 KB
  Компоненты для изучения: BitBtn StringGrid вкладка dditionl DteTimePicker вкладка Win32. Компоненты для изучения: StringGrid вкладка dditionl PgeControl вкладка Win32 Timer вкладка System. Компоненты для изучения: ColorBox вкладка dditionl RichEdit вкладка Win32 Timer вкладка System. Компоненты для изучения: MskEdit вкладка dditionl PgeControl вкладка Win32 Timer вкладка System.
39037. Разработка многооконных приложений с использованием Borland C++ Builder 88.5 KB
  Для добавления новой формы в проект приложения необходимо вызвать команду File New Form главного меню или нажать соответствующую кнопку на панели инструментов. Для каждой формы приложения вызывается метод CreteForm создать форму объекта приложения ppliction. Главная форма автоматически отображается на экране при запуске приложения в то время как остальные формы которые иногда называют вторичными будут созданы но останутся невидимыми для пользователя до тех пор пока не будут явно...
39038. Количество информации. Мера Хартли и мера Шеннона 80.5 KB
  Рассмотрение предложенных способов измерения количества информации удобно начать с примера. Тем не менее только на основе априорной информации мы не можем точно сказать какое именно число очков выпало в результате конкретного подбрасывания. С поступлением новой информации о результате подбрасывания эта неопределенность может уменьшаться.
39039. Понятие информационной системы 98.5 KB
  Сейчас пришло время дать этому понятию более точное определение: Информационная система ИС это взаимосвязанная совокупность средств методов и персонала используемых для хранения обработки и выдачи информации в интересах достижения поставленной цели. Как видно из определения информационные системы обеспечивают сбор хранение обработку поиск выдачу информации необходимой в процессе принятия решений задач из любой области. Основными элементами работы информационных систем являются: ввод новой информации и выдача текущей информации по...
39040. Классификация информационных систем 123 KB
  Основная проблема классификации ИС заключается в том что единой системы оснований для классификации выработать не удалось. Предлагается классифицировать информационные системы по следующим признакам: По масштабам применения – настольные офисные и корпоративные. ПО: различные программные приложения связанных общим информационным фондом Такие приложения создаются с помощью так называемых настольных СУБД FoxPro Prdox dBse MS ccess или с помощью файловой системы и диалоговой оболочки для ввода редактирования и обработки данных. Это...