19128

РАСПРЕДЕЛЕНИЕ ТЕМПЕРАТУР ПО ВЫСОТЕ АКТИВНОЙ ЗОНЫ

Лекция

Энергетика

ЛЕКЦИЯ 8 РАСПРЕДЕЛЕНИЕ ТЕМПЕРАТУР ПО ВЫСОТЕ АКТИВНОЙ ЗОНЫ РАСПРЕДЕЛЕНИЕ ЭНЕРГОВЫДЕЛЕНИЯ В АКТИВНОЙ ЗОНЕ Создание реактора с максимально выровненным и стабильным полем энерговыделения в течении кампании одна из важнейших задач оптимизации активной зоны. Выра...

Русский

2013-07-11

134 KB

47 чел.

ЛЕКЦИЯ 8

РАСПРЕДЕЛЕНИЕ ТЕМПЕРАТУР ПО ВЫСОТЕ АКТИВНОЙ ЗОНЫ

РАСПРЕДЕЛЕНИЕ ЭНЕРГОВЫДЕЛЕНИЯ В АКТИВНОЙ ЗОНЕ

Создание реактора с максимально выровненным и стабильным полем энерговыделения в течении кампании — одна из важнейших задач оптимизации активной зоны. Выравнивание и стабилизация поля тепловыделения существенно улучшают физические и экономические   характеристики реактора, а также влияют на решение вопросов его регулирования и безопасности. Так как максимальное удельное энерговыделение, как правило, ограничено предельными характеристиками материалов, то снижение .неравномерности даёт    возможность повысить среднюю тепловую нагрузку на делящийся материал и, следовательно, увеличить мощность активной зоны или уменьшить её объем. Более равномерное тепловыделение   позволяет, при прочих равных условиях, увеличить глубину и    равномерность выгорания топлива, сократить объемную долю теплоносителя и конструкционных материалов, что приводит к улучшению физических характеристик реактора  и экономических показателей установки.

Удельное объемное энерговыделение в топливе (qv) определяется   соотношением:

                                                    ,                                                     (8.1)

где — поток нейтронов; f — макроскопическое сечение деления; С = 3,1.1010  дел/Вт.с. Для расчета энерговыделения необходимо использовать многогрупповые методы, учитывающие спектр нейтронов и зависимость сечения деления от энергии.

Полная тепловая мощность реактора равна:

                                                  .                                                  (8.2)

Интегрирование ведется по объему, занятому топливом.

Функция определяет плотность потока нейтронов соответствующей энергетической группы в любой точке активной зоны для любого момента времени:

= maxf(x,y,z,t)

Распределение нейтронного потока при стационарной мощности реактора можно получить из решения уравнения переноса:

+2 = 0, 2=а/D:

— для активной зоны в виде параллелепипеда со сторонами a, b, c :

                                      ;                                           (8.3)

— для цилиндрической активной зоны радиуса R и высотой H:

                                     ;                                               (8.4)

— для шаровой активной зоны радиусом R:

                                         .                                                            (8.5)

Плотность объемного энерговыделения в топливе можно определить из распределения нейтронного потока:

                                    ,                                (8.6)

или:

                                              .                                                  (8.7)

Соотношения (8.4 — 8.5) справедливы для реакторов без отражателя нейтронов. Наличие отражателей снижает неравномерность распределения нейтронов и энерговыделения в активной зоне. Другим способом выравнивания энерговыделения является профилирование обогащения топлива и рациональное использование поглотителей. В процессе работы реактора распределение энерговыделения меняется. С учетом всех факторов функция f  не может быть получена аналитически. Для различных реакторов в настоящее время существуют компьютерные программы, позволяющие вычислять потоки нейтронов и энерговыделения в любой точке реактора для любого момента времени.

Степень неравномерности энерговыделения  в реакторе характеризуется коэффициентами неравномерности, равном отношению его максимального  значения к среднему.

Объемный коэффициент неравномерности равен:

                                          .                                                   (8.8)

Объемный коэффициент неравномерности равен произведению коэффициентов неравномерности по координатам. В частности, для цилиндрической активной зоны Kv=KrKz, где  Kr — радиальный коэффициент неравномерности,  Kz — коэффициент неравномерности по высоте активной зоны:

                    .                          (8.9)

Для реактора без отражателя коэффициенты неравномерности равны:

цилиндр — Kr= 2,32; Kz = /2 = 1,57. Kv=KrKz = 3,64;

куб — Kv=KxKyKz = (/2)3 = 3,88;

шар — Kv=2/3 = 3,29.

Для реальных энергетических реакторов коэффициенты неравномерности меньше. Это достигается конструкцией отражателя, профилированием обогащения, введением выгорающих поглотителей, рациональным размещением органов СУЗ и т.д. Так для реактора БН–600 максимальные значения коэффициентов неравномерности равны 1,3 при двухзонном и 1,2 при трехзонном выравнивании поля энерговыделения. Для реактора ВВЭР–1000 с борным регулированием Kr=1,2 — 1,4;  Kz=1,5. Для РБМК Kr=1,45;  Kz=1,5.

Распределение потока нейтронов по радиусу активной зоны показано на рис.8.1.

Рис. 8.1. Распределение тепловыделения по радиусу активной зоны:

1 — без отражателя; 2 — с отражателем; 3 — профилированная зона

8.2. Распределение энерговыделения в реакторе на быстрых нейтронах по радиусу

1 – Зона малого обогащения; 2 — зона большого обогащения, 3 — боковой экран

8.3. Распределение энерговыделения по высоте в реакторе на быстрых нейтронах

Коэффициенты неравномерности энерговыделения в реакторе БН–600 при двухзонном профилировании обогащения представлены в табл. 8.1.

Таблица.8.1

Коэффициенты неравномерности энерговыделения

Зона

Радиальный

Осевой

Воспроизводства

1,7

2

Малого обогащения

1,06

1,27

Большого обогащения

1,2

1,27

Подогрев теплоносителя

При постоянном проходном сечении ТВС по высоте активной зоны подогрев теплоносителя на участке dz равен:

                                                  ,                                                         (8.10)

где Ql (z) — распределение линейной мощности кассеты по высоте; G — расход теплоносителя, Ср — его теплоемкость. Интегрирование в пределах от –Н/2 до + Н/2 с учетом (1.4 и 1.9) дает:

                                                          .                                                         (8.11)

Если известна мощность кассеты (Q), то подогрев (Т) равен:    

                                                     .

Для расчета температуры теплоносителя и температуры элементов активной зоны после остановки реактора необходимо иметь данные по остаточному тепловыделению. Для вычисления остаточного энерговыделения можно рекомендовать выражение:

                                 ,                                    (8.12)

где W — мощность реактора перед остановкой в момент времени , t —  время, прошедшее после остановки реактора.

Распределение температуры теплоносителя по высоте активной зоны

Приращение температуры теплоносителя на участке оболочки dz равно:

,

где ql(z) = qlmcos(z/H) — распределение линейной тепловой нагрузки по высоте активной зоны; g — расход теплоносителя в элементарной ячейке. Температура теплоносителя в точке z определяется путем интегрирования:

                                           .

Учитывая, что средняя линейная нагрузка связана с максимальной  через коэффициент неравномерности энерговыделения по высоте активной зоны: qlm = qlKz = ql/2, а подогрев теплоносителя равен qlН /gCp, получим:

                          .                        (8.13)

В последнем выражении Твх — температура теплоносителя на входе в активную зону.

Распределение температур по высоте активной зоны реактора ВВЭР–1000 при температуре входа теплоносителя 290 0С и подогреве 32 градуса показано на рис. 8.4.

Рис.8.4. Распределение температуры теплоносителя по высоте активной зоны

Приведенные соотношения получены для активной зоны без отражателя. Для вычисления температур в реальном реакторе необходимо учесть эффективную добавку отражателя, как будет указано в следующих лекциях.


 

А также другие работы, которые могут Вас заинтересовать

26274. Урожайность яровой пшеницы (т/га) на выщелоченных черноземах в производственных опытах СибНИИЗХим, Новосибирская область 263.5 KB
  Порядок формирования технологий возделывания сельскохозяйственных культур, их региональные и федеральные регистры. Наборы технологий разрабатывают применительно к различным агроэкологическим группам земель, для разных уровней интенсификации производства и категорий товаропроизводителей на основе нормативов.
26275. Архивное законодательство в 2000-е гг 56 KB
  Последнему непосредственно подчинены 15 федеральных государственных архивов Архивы в системе архивной службы РФ Федеральному архивному агентству непосредственно подчиняются 15 федеральных государственных архивов Всероссийский научноисследовательский институт документоведения и архивного дела ВНИИДАД и 1 обслуживающая организация.2004 Положение о ФАА – положение регламентирует отношения сроки сферу использования сеть архивов обязанности сторон отраслевые фонды –имеющие право постоянного хранения документов. принимает решение о выдаче...
26276. Организация комплектования Архивного Фонда Российской Федерации и других архивных документов 21.85 KB
  Целью комплектования является наиболее полная концентрация в архиве профильных ему документов. Мероприятия входящие в понятие комплектования: Определение состава источников; ЭЦД и НТО; Прием документов в государственные муниципальные архивы. Понятие источник комплектования появилось в 1940ые годы это учреждения или лица непосредственно передающие документы в государственные или ведомственные архивы.
26277. Теоретические основы и организация проведения экспертизы ценности документов Архивного Фонда Российской Федерации и других архивных документов 33.06 KB
  Отбор документов на гос.выделение документов к уничтожению 5. Систему составляют три группы критериев: происхождение документов их содержание и внешние особенности.
26279. Учет архивных документов 70 KB
  10 Роль учета: Одним из важнейших направлений деятельности государственных и муниципальных архивов является осуществление государственного учёта архивных документов. Учёт одновременно является средством обеспечения сохранности документов их адресного поиска а также создаёт возможность для разработки и использования информационных справочников. На основе данных учётных документов рассчитываются штатная численность сотрудников архивов площади и оборудование необходимые для хранения документов и осуществляется финансирование.
26280. Обеспечение сохранности документов 48 KB
  Обеспечение сохранности документов до середины 30х гг. понималось в комплексе с другими направлениями сбор концентрация в архивах использование документов когда комплектование и использование документов оформляются как самостоятельное направление – проблема обеспечения сохранности включала учет и организацию хранения документов. она связывалась с эвакуацией и реставрацией документов.
26281. Система НСА к архивным документам 19.24 KB
  Назначение СНСА. Понятие первичная информация вторичная информация СНСА архива СНСА АФ РФ Архивный справочник отражение вопросов связанных с НСА в законодательных и нормативнометодических актах РФ в 1990е 2000е годы. Требования предъявляемые к СНСА к документам государственных муниципальных архивов. СНСА это комплекс взаимосвязанных и взаимодополняемых архивных справочников о составе и содержании архивных документов создаваемых на единой методической основе для поиска архивных документов и архивной информации в целях...
26282. Организация документов АФ РФ и других архивных документов в архиве 62 KB
  Организация документов АФ РФ и других архивных документов в архиве Архивы в зависимости от их функций и подчиненности можно разделить на две группы: государственные и ведомственные. Государственные архивы учреждения которые осуществляют собирание хранение и организацию архивных документов в целях их всестороннего использования. Наиболее ценная часть документов архива по истечении срока хранения в ведомстве передается на постоянное хранение в государственный архив. Архивный фонд Российской Федерации это исторически сложившаяся и...