19130

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТВС И ОБЪЕМНЫЙ СОСТАВ РАБОЧЕЙ ЯЧЕЙКИ

Лекция

Энергетика

ЛЕКЦИЯ 10 ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТВС И ОБЪЕМНЫЙ СОСТАВ РАБОЧЕЙ ЯЧЕЙКИ В предыдущей лекции представлена методика определения диаметра твэлов и числа ячеек для их размещения в ТВС. Целью настоящей лекции является компоновка ТВС расчет ее геометрических х

Русский

2013-07-11

320 KB

34 чел.

ЛЕКЦИЯ 10

ГЕОМЕТРИЧЕСКИЕ   ХАРАКТЕРИСТИКИ  ТВС  И  ОБЪЕМНЫЙ  СОСТАВ РАБОЧЕЙ ЯЧЕЙКИ

В предыдущей лекции представлена методика определения диаметра твэлов и числа ячеек для их размещения в ТВС. Целью настоящей лекции является компоновка ТВС, расчет ее геометрических характеристик и определение состава элементарной ячейки.

Рассмотрим методику расчета геометрии ТВС реактора БН–600. Компоновка твэлов с дистанционированием «проволока по оболочке» показана на рис.10.1.

Рис.10.1. Компоновка твэлов с проволочным дистанционированием по принципу «проволока по оболочке»:

1 — дистанционирующая лента толщиной л; 2 — дистанционирующая проволока диаметром dп ; 3 — твэл диаметром d1; 4—вытеснитель диаметром dвыт; 5 — шестигранная труба.

Тепловыделяющая сборка представляет собой шестигранник с шестью рядами твэлов. В соответствии с выражением (9.1) количество твэлов равно 127. Диаметр дистанционирующей проволоки равен:

                                                                                                  (10.1)

Здесь С1 — константа, выбираемая из условия собираемости ТВС. Она может быть оценена как сумма плюсового допуска для размера пучка твэлов под ключ и минусового допуска для шестигранной трубы.

Для более равномерного распределения температуры в оболочке для твэлов, прилегающих к чехлу ТВС, на стенке чехла размещены вытеснители, а дистанционирование периферийных твэлов производится с помощью ленты, также навиваемой на оболочку. Внутренний размер шестигранного чехла под ключ равен:

                                                                                (10.2)

Радиус закругления в месте сопряжения граней чехла:

                                                       ,                                                (10. 3)

где С2 — константа, определяющая технологическую погрешность изготовления чехла. Формулы (10.1) — (10.3) вытекают из геометрии твэла и ТВС. Толщина стенки чехла выбирается из условия обеспечения ее целостности в рабочих условиях. Чехол ТВС, находящийся в центральной части активной зоны, испытывает напряжения, вызываемые давлением теплоносителя и, возможно, взаимодействием с пучком твэлов вследствие более интенсивного распухания последнего. Распределение плотности потока нейтронов, температуры и давления по высоте твэла имеет вид, представленный на рис. 10.2.

Рис.10.2. Распределение плотности потока нейтронов, температуры и давления по высоте твэла

Наиболее высокое давление теплоносителя наблюдается в нижнем сечении сборки. В этом сечении материал чехла работает в упругой области, и наибольшие напряжения достигаются в месте перехода прямого участка стенки в закругленный (расчетная схема показана на рис. 10.3).

Рис.10.3. Схема расчета чехла ТВС реактора БН–600

Расчет ведется по теории изгиба кривого бруса, нагруженного линейной нагрузкой от перепада давления Р.  Задача сводится к решению дифференциального уравнения нейтральной оси балки:

                                                   ,                                                       (10.4)

где Е — модуль упругости; J — момент инерции; М(х) — изгибающий момент.

Запишем граничное условие для участка COD:

в сечении О — О:

,  ;

в сечении С — С:

                                                  ;                                                       (10.5)

в сечении DD:

.

Рассмотрим два участка CO и OD:

для участка С — О

                                                ;                                                (10.6)

для участка OD:

                                                 ,                                                            (10.7)

где

.

Интегрирование (10.6) и (10.7) позволяет определить моменты, действующие в чехле ТВС:

                           (10.8)

                                     .

На участке D — D:

                     .          (10.9)

В последнем выражении b — расстояние до нейтральной оси, примерно равное половине толщины чехла.

Эпюра действующих моментов показана на рис.10.4.

Рис.10.4. Эпюра моментов в шестигранном чехле реактора БН-600

По теории изгиба кривого бруса определим напряжения в точке 1:

                               ,                               (10.10)

где b — расстояние до нейтральной оси; F — статический момент, равный произведению площади сечения на расстояние от центра тяжести до нейтральной оси; i — радиус кривизны бруса; rо — радиус окружности, вписанной в шестигранник; к — толщина чехла. Напряжения в точках 3 и 3/ равны:

                                                        .                                                       (10.11)

Например, для чехла ТВС реактора БН–600 с rвн=1.5 мм при внутреннем давлении Р = 0,7 МПа изгибающие моменты  в сечениях DD и С — С соответственно равны: . М1 = 7,3103 Нм ;   М2 = 1,25104 Нм, а максимальные напряжения 1=155 МПа; 2=125 МПа.

Так как жесткость оболочки при изгибе больше жесткости балки, то расчет проведен с запасом.

Если rзL1 и kL1 (что выполняется для чехла ТВС), можно использовать следующее упрощенное соотношение для расчета максимальных напряжений:

                      ,                               (10.12)

где L — внешний размер чехла «под ключ».

Условие работоспособности в опасном сечении — максимальное напряжение не должно превышать предела текучести материала s. Если обозначить коэффициент запаса по напряжениям через n, то необходимая толщина стенки чехла может     быть найдена из условия:

                                                                                                              (10.13)

Для приближенных оценок можно принять n = 1,2. Кроме коэффициента запаса по напряжениям иногда используют коэффициент запаса по предельной нагрузке — np:

                                                                               (10.14)

где Рmax —предельное давление в ТВС (или перепад давления).

Как видно из рис.10.2, в верхних сечениях ТВС давление  теплоносителя существенно меньше общего перепада по всей ТВС Рmax, однако   интенсивность облучения быстрыми  нейтронами  и температура чехла в этих областях больше, что   обусловливает возможность появления пластических деформаций, вызванных термической и радиационной ползучестью стали. Было  показано, что при t 31О23 1/см2 и Т 600 0C,  максимальные неупругие деформации чехла ТВС из аустенитной нержавеющей стали в отожженном состоянии не превышают 0,001L, т.е. ниже предельных. Поэтому для оценки работоспособности чехла вполне достаточно условий (10.13) и (10.14).

Зазор между ТВС (м) обычно выбирается из условия недопустимости контакта между соседними ТВС в любом сечении по высоте сборки. Худшим случаем является соседство ТВС, достигших предельного выгорания. Условие касания этих ТВС:

                                                                                                   (10.15)

Два первых слагаемых выражают изменение размера «под ключ» в результате ползучести и распухания чехла. Постоянная С3 выбирается из анализа допусков на шестигранный чехол.

Можно полагать, что

                                                        ,                                                         (10.16)

где S — распухание материала чехла.

Деформирование чехла ТВС в результате ползучести стали происходит от давления теплоносителя и силового воздействия со стороны пучка твэлов. Скорость ползучести выражается степенным законом:

где f(t,T)— некоторая функция флюенса и температуры. Обычно для чехла ТВС можно пренебречь термической ползучестью, тогда n=1. Для этого случая при условии L/rз 30 получено следующее выражение для скорости изменения размера чехла под ключ:

                                                          .                            (10.17)

Формула (10.17) выражает только ту часть деформации пакета, которая обусловлена радиационной ползучестью под давлением теплоносителя. Кроме того, может возникнуть неупругая деформация вследствие разной скорости распухания оболочек твэлов и материала чехла. Если скорость распухания чехла меньше, чем скорость распухания оболочек твэлов, через некоторое время tк после начала работы ТВС распухающий пучок твэлов «догоняет» распухающий чехол и начинается их сильное взаимодействие. По расчетам, опасное состояние в отношении работоспособности чехла наступает через ~2000 эф. ч работы после начала контакта. Время tк можно вычислить, если известны зазоры в собранных ТВС.

Рис. 10.5. Изменение размера чехла ТВС по длине активной зоны:

1 — радиационная  ползучесть стали;   2 — распухание    стали; 3 — суммарная деформация

Критическое сечение находится в верхней половине активной части ТВС (рис. 10.5). Для нахождения критического сечения и определения необходимого расстояния между соседними ТВС приходится производить расчеты в нескольких точках по высоте активной зоны. Учитывая неопределенность в данных по распуханию и ползучести сталей, можно рекомендовать для эскизных моделей выбор зазора производить на основе расчета распухания в центральном сечении при температуре теплоносителя на выходе из реактора.

Определив к и м.с, можно приступить к расчету объемного состава ячейки, занятой ТВС (рабочей ячейки). Объемная доля топлива равна:

                                           .                                         (10.18)

Объемная доля оболочек твэлов равна:

                                             .                                               (10.19)

Связь между диаметром вытеснителя и толщиной дистанционирующей ленты находится из условия касания вытеснителей с дистанционирующей лентой и чехлом ТВС. Диаметр вытеснителя определяется в процессе тепло-гидравлического расчета ТВС:

                                                        .                                                 (10.20)

Объемная доля дистанционирующих элементов (проволоки, лент и вытеснителей):

                    .                 (10.21)

Объемная доля чехла ТВС:

                                                   .                                                     (10.22)

Объемные доли конструкционных материалов и теплоносителя в рабочей ячейке равны:

                                 .                                 (10.23)

Полученные значения используются для уточнения нейтронно-физических и тепло-гидравлических расчетов.


 

А также другие работы, которые могут Вас заинтересовать

19119. Электромагнитные измерительные преобразователи 214.5 KB
  Лекция №15. Электромагнитные измерительные преобразователи К классу электромагнитных преобразователей помимо рассмотренных индуктивных датчиков относят близкие им по принципу действий взаимоиндуктивные трансформаторные вихретоковые и индукционные преобразо...
19120. Прогнозирование и регрессионный анализ 91.16 KB
  Пусть требуется исследовать зависимость Y(x), причем величины у и x измеряются в одних и тех ж экспериментах. Будем считать, что погрешность измерения величины х пренебрежимо мала по сравнению с погрешностью измерения величины у
19121. Экономические и экологические проблемы развития ядерной энергетики 194.5 KB
  ЛЕКЦИЯ 1 Экономические и экологические проблемы развития ядерной энергетики Энергетика играет решающую роль в обществе обеспечивая социальное развитие и экономический рост. Предоставление адекватных энергетических услуг по доступным ценам надежным и безопасным ...
19122. Общие вопросы разработки проекта 76.5 KB
  ЛЕКЦИЯ 2 Общие вопросы разработки проекта Проектирование совокупность логических и математических процессов поиска выбора и обоснования оптимального варианта принципа действия и конструкции разрабатываемого изделия отвечающего требованиям технического зада...
19123. Основные типы реакторов, принятые к промышленной реализации 4.43 MB
  ЛЕКЦИЯ 3 Основные типы реакторов принятые к промышленной реализации Классификация ядерных энергетических реакторов По физическим признакам различают реакторы на тепловых промежуточных и быстрых нейтронах; реакторы уранового плутониевого или ториевого цикла;
19124. Требования к твэлам и ТВС. Классификация твэлов 2.22 MB
  ЛЕКЦИЯ 4 Требования к твэлам и ТВС. Классификация твэлов Главной составляющей частью активной зоны любого гетерогенного реактора являются твэлы выделяющие энергию в виде тепла отводимую теплоносителем. Геометрические размеры и форма твэлов могут быть самыми разн
19125. Материалы тепловыделяющих элементов ЯЭУ 961.5 KB
  ЛЕКЦИЯ 5 Материалы тепловыделяющих элементов ЯЭУ Выбор материалов является существенным этапом в проектировании твэлов. Материалы наряду с конструкцией и условиями эксплуатации определяют работоспособность и надежность твэла. При выборе материалов твэла должн
19126. ПРОБЛЕМЫ ОБОСНОВАНИЯ РАБОТОСПОСОБНОСТИ ТВЭЛОВ 235.5 KB
  ЛЕКЦИЯ 6 ПРОБЛЕМЫ ОБОСНОВАНИЯ РАБОТОСПОСОБНОСТИ ТВЭЛОВ Тепловыделяющие элементы ядерных реакторов эксплуатируются в сложных условиях совместного воздействия радиационного излучения высоких температур механических напряжений и коррозионных сред. Выбор надежно...
19127. ПРОБЛЕМЫ ОБОСНОВАНИЯ РАБОТОСПОСОБНОСТИ ТВЭЛОВ 6.67 MB
  ЛЕКЦИЯ 7 ПРОБЛЕМЫ ОБОСНОВАНИЯ РАБОТОСПОСОБНОСТИ ТВЭЛОВ Работоспособность конструкции твэла может быть обоснована экспериментальными или расчетными методами. Экспериментальные методы обоснования работоспособности и надежности конструкции требуют массового обл