19132

ДОПУСТИМАЯ МОЩНОСТЬ ТВЭЛА И ТВС

Лекция

Энергетика

ЛЕКЦИЯ 12 ДОПУСТИМАЯ МОЩНОСТЬ ТВЭЛА И ТВС Допустимая мощность твэлов и ТВС в стационарных условиях эксплуатации определяется: предельными температурами эксплуатации оболочки твэла и элементов конструкции ТВС: предельными температурами эксплуатации

Русский

2013-07-11

374.5 KB

36 чел.

ЛЕКЦИЯ 12

ДОПУСТИМАЯ МОЩНОСТЬ ТВЭЛА И ТВС

Допустимая мощность твэлов и ТВС в стационарных условиях эксплуатации определяется:

  •   предельными температурами эксплуатации оболочки твэла и элементов конструкции ТВС:
    •   предельными температурами эксплуатации топливного сердечника;
    •   обеспечением запаса до кризиса теплообмена.

В условиях максимальной проектной аварии:

  •   степенью окисления циркониевой оболочки (не более 18% от толщины);
    •  долей прореагировавшего циркония (не более 1 % массы циркония в активной зоне);
    •  температурой плавления топливного сердечника;
    •  запасом до паро-циркониевой реакции.

Распределение температур в твэле

Если заданы температура теплоносителя на входе (Твх), подогрев теплоносителя (Т) и коэффициент теплоотдачи от оболочки к теплоносителю (), то распределение температур по высоте оболочки определяется выражением:

                                .                               (12.1)

Температура на внутренней поверхности оболочки (Т2) равна:

                   ,                      (12.2)

где о — толщина оболочки, о — коэффициент теплопроводности оболочки.

Температура внешней поверхности топливного сердечника (Т3) определяется тепловой проводимостью зазора (hз) или контакта между топливом и оболочкой:

                   .          (12.3)

Тепловая проводимость или термическое сопротивление (величина обратная проводимости) между сердечником и оболочкой твэла определяется величиной зазора, составом газа в зазоре, давлением, шероховатостью поверхностей, температурой и т.д.  При заполнении зазора жидким металлом, тепловая проводимость равна:

                                                      ,                                                       (12.4)

где м — теплопроводность металла (натрий, свинец и т.д.), з — радиальный зазор.

При контакте между топливом и оболочкой твэла с жидкометаллическим подслоем в качестве величины зазора можно, по-видимому, принять сумму средних величин неровностей (шероховатостей) топлива и оболочки — Rz. В случае заполнения зазора газом тепловая проводимость зависит от большого количества фактором и с достаточной точностью не может быть определена теоретически. В практике расчета твэлов обычно пользуются экспериментальными данными. На рис. 12.1 — 12.3 представлены зависимости тепловой проводимости зазора между топливом и оболочкой в зависимости от температуры и величины зазора.

Рис.12.1. Зависимость теплой проводимости зазора при заполнении гелием: О — 38 МВт.с/кг (з=57 мкм), х — 46 МВт.с/кг (з=105 мкм), — 65 МВт.с/кг (з=0), _________ — необлученный твэл ((з=130 мкм) - - - - - - — облученный (з=100 мкм)

Рис.12.2. Зависимость теплой проводимости зазора при заполнении аргоном: О — 38 МВт.с/кг (з=57 мкм), х — 46 МВт.с/кг (з=105 мкм), — 65 МВт.с/кг (з=0), _________ — необлученный твэл ((з=130 мкм) - - - - - - — облученный (з=100 мкм)

Рис.12.3. Зависимость теплой проводимости от величины радиального  зазора для твэла реактора на быстрых нейтронах: — заполнение гелием, О — 30 % гелия и 70 % ксенона.

Стационарное поле температур в сердечнике твэла с внутренним энерговыделением qv описывается уравнением Фурье:

                                                 ,                                         (12.5)

где r — радиальная координата, T — температура, (r, T) — теплопроводность материала сердечника, являющаяся функцией температуры, пористости и состава. В общем случае это уравнение не решается в общем виде. Для грубых оценок, полагая теплопроводность и плотность объемного энерговыделения постоянными, получим:

Последнее уравнение описывает распределение температур в сердечнике в координате с максимальной температурой центра, которая по высоте практически совпадает с центром активной зоны.

Если теплопроводность зависит от температуры, то уравнение (12.5) допускает разделение переменных:

                                   .                                 (12.6)

Интеграл в левой части называется интегралом теплопроводности. Он может быть вычислен для любой начальной температуры, причем (0, Т) = (0, Тпов) + (Тпов, Т) согласно правилам интегрирования. Параметр Г определяется геометрией таблетки. Он равен 4 для сплошной таблетки и 4/[1  2ln/(2  1)] для таблетки с центральным отверстием, где  R/r0. Зависимость интеграла теплопроводности диоксида урана разной пористости от температуры при нулевой начальной температуре представлена на рис.12.4.

На рис.12.4 стрелками показан путь выбора допустимой линейной тепловой нагрузки, при которой максимальная температура в центре топлива не превышает температуры плавления с коэффициентом запаса 1,25. Следует отметить, что допустимая линейная нагрузка не является функцией диаметра твэла. Поэтому при одной и той же линейной нагрузке в твэлах меньшего диаметра реализуются более высокие градиенты температур, определяемые удельным тепловым потоком. Выбор диаметра твэла для известной линейной тепловой нагрузки является компромиссом технических и экономических требований.

Для сердечника из диоксида урана с температурой поверхности выше 500 0С интеграл теплопроводности может быть аппроксимирован зависимостью:

                                    .                                        (12.7)

В последнем выражении T4 — максимальная температура сердечника (в центре или на границе центрального отверстия).

Рис.12.4. Зависимость интеграла теплопроводности сердечника от температуры центра при Тпов = 0 0С. Показаны расчетные кривые для топлива теоретической плотности (верхняя кривая), и для пористости 3 и 5 %

В общем случае задача о распределении температур по радиусу сердечника может быть решена численно путем разбиения на конечное число концентрических цилиндров (рис.12.5).

Рис.12.5 Схема расчета температуры

Поверхностный тепловой поток и градиент температуры на границе зоны с радиусом ri равен:

                                             .                                          (12.8)

Тепловой поток на границе зоны равен:

.

Таким образом, перепад температуры в любой зоне по радиусу может быть найден из соотношения:

                                       .                                               (12.9)

При известной температуре поверхности сердечника можно получить значение температур в любой точке по радиусу. Степень точности расчетов зависит от числа разбиений, т.е. от r. Методика учитывает зависимость теплопроводности от температуры и может быть применима при изменении энерговыделения по радиусу. Распределение температур по радиусу сердечника показано на рис.12.6.

Рис.12.6. Распределение температуры по радиусу сердечника

Допустимая мощность твэла и ТВС

Как уже говорилось выше, допустимая мощность твэлов и ТВС в стационарных условиях эксплуатации определяется:

  •   предельными температурами эксплуатации оболочки твэла и элементов конструкции ТВС:
    •   предельными температурами эксплуатации топливного сердечника;
    •   обеспечением запаса до кризиса теплообмена.

Обычно в расчетах принимается, что запас мощности до плавления должен быть не менее 20 % с тем, чтобы не было расплавления в случае аварии с забросом реактивности.

Предельная мощность твэлов по кризису теплообмена, характеризуемая возникновением кризисных явлений хотя бы на одном участке твэла при заданных физических и геометрических характеристиках твэлов, зависит от расхода, температуры и давления охлаждающего теплоносителя. Условие безопасной работы твэла, определяющее допустимую мощность твэла по кризису теплообмена, может быть обеспечено, если тепловой поток в стационарном и аварийном режимах не превышает критического по всей высоте активной зоны. В конечном счете допустимая мощность твэла (qдоп) устанавливается наименьшей из всех предельных мощностей по плавлению топлива и кризису теплообмена с определенным коэффициентом запаса k (до некоторой степени произвольного в связи с недостаточной изученностью процессов теплоотвода в действующих реакторах).

Возможные отклонения физических и геометрических характеристик твэлов учитываются коэффициентом, называемым механическим k1мех. С учетом этих двух коэффициентов допустимая I мощность твэлов равна:

где qпред — наименьшая из предельных мощностей твэла по плавлению топлива и кризису теплообмена (для реакторов с натриевым и газовым охлаждением используется только коэффициент запаса по плавлению). Коэффициент запаса принимают, равным 1,1.

В реальных кассетах мощность между твэлами   распределяется неравномерно. Эта неравномерность характеризуется   коэффициентом  kk , равным отношению максимальной мощности твэла в кассете к средней.

При использовании механического коэффициента k2мех,    учитывающего отклонение физических и геометрических   характеристик ТВС от средних значений для допустимой мощности кассеты можно получить:

.

Значения критического теплового потока, приводящего к кризису теплосъема в реакторах с водяным охлаждением, приведены в предыдущей лекции.


 

А также другие работы, которые могут Вас заинтересовать

3387. Реконструкция многоквартирного крупноблочного дома серии 1-439А 888.5 KB
  При модернизации и реконструкции жилых зданий массовой застройки предусматривается решение следующих задач: приведение планировочной структуры здания в соответствие с требованиями к потребительским и эксплуатационным качествам современного ...
3388. Проект разработки роторного снегоочистителя 857.5 KB
  В процессе подготовки будущего инженера к самостоятельному решению технических и производственных задач одно из ведущих мест принадлежит курсовому проектированию. Цель данного курсового проекта – закрепить и обобщить теоретический мате...
3389. Проектирование редуктора и выбор типа зубчатых колес 353 KB
  Целью курсовой работы является получение навыков самостоятельного применения теоретических знаний для решения практических задач, связанных с техническим моделированием и созданием несложных технических устройств практического назначения. В...
3390. Контрольный тест по дисциплине Социология 133.5 KB
  Контрольный тест по дисциплине «Социология» для студентов дистанционного обучения Предлагаемый тест предназначен для контроля знаний, полученных студентами дистанционной формы обучения в процессе освоения курса общей социологии. Тест разработан в со...
3391. Жилищное строительство жилого здания 47 KB
  Введение Жилищное строительство в настоящее время характеризуется повышением стандарта жилища, переходом на новые улучшенные серии жилых домов с прогрессивными конструкциями. Данный курсовой проект «Жилое здание» выполнен в соответствии с задание на...
3392. Проектированию несложного гражданского малоэтажного здания 90.5 KB
  Введение Цель данной курсовой работы – обучение самостоятельному проектированию несложного гражданского здания с учётом основных факторов, влияющих на проектное решение. Выполнение курсовой работы позволяет систематизировать, закрепить и р...
3393. База данных Аэропорт 596 KB
  Введение Программное обеспечение для работы с базами данных используется на персональных компьютерах уже довольно давно. К сожалению, эти программы либо были элементарными диспетчерами хранения данных и не имели средств разработки прил...
3394. РЕЖИМЫ РАБОТЫ ОСНОВНОГО ОБОРУДОВАНИЯ ЭЛЕКТРОСТАНЦИЙ 3.69 MB
  Настоящее учебное пособие предназначено для студентов, изучающих курсы "Режимы работы основного оборудования" электрический станций и выполняющие дипломные, курсовые и УИР, связанные с вопросами использования оборудования ТЭС в переменных режимах работы...
3395. Особенности русской философии 46.05 KB
  Введение Главная задача философии заключается в том, чтобы разработать теорию о мире как едином целом, которая бы опиралась на все многообразие опыта. Философия порой понимается...