19132

ДОПУСТИМАЯ МОЩНОСТЬ ТВЭЛА И ТВС

Лекция

Энергетика

ЛЕКЦИЯ 12 ДОПУСТИМАЯ МОЩНОСТЬ ТВЭЛА И ТВС Допустимая мощность твэлов и ТВС в стационарных условиях эксплуатации определяется: предельными температурами эксплуатации оболочки твэла и элементов конструкции ТВС: предельными температурами эксплуатации

Русский

2013-07-11

374.5 KB

32 чел.

ЛЕКЦИЯ 12

ДОПУСТИМАЯ МОЩНОСТЬ ТВЭЛА И ТВС

Допустимая мощность твэлов и ТВС в стационарных условиях эксплуатации определяется:

  •   предельными температурами эксплуатации оболочки твэла и элементов конструкции ТВС:
    •   предельными температурами эксплуатации топливного сердечника;
    •   обеспечением запаса до кризиса теплообмена.

В условиях максимальной проектной аварии:

  •   степенью окисления циркониевой оболочки (не более 18% от толщины);
    •  долей прореагировавшего циркония (не более 1 % массы циркония в активной зоне);
    •  температурой плавления топливного сердечника;
    •  запасом до паро-циркониевой реакции.

Распределение температур в твэле

Если заданы температура теплоносителя на входе (Твх), подогрев теплоносителя (Т) и коэффициент теплоотдачи от оболочки к теплоносителю (), то распределение температур по высоте оболочки определяется выражением:

                                .                               (12.1)

Температура на внутренней поверхности оболочки (Т2) равна:

                   ,                      (12.2)

где о — толщина оболочки, о — коэффициент теплопроводности оболочки.

Температура внешней поверхности топливного сердечника (Т3) определяется тепловой проводимостью зазора (hз) или контакта между топливом и оболочкой:

                   .          (12.3)

Тепловая проводимость или термическое сопротивление (величина обратная проводимости) между сердечником и оболочкой твэла определяется величиной зазора, составом газа в зазоре, давлением, шероховатостью поверхностей, температурой и т.д.  При заполнении зазора жидким металлом, тепловая проводимость равна:

                                                      ,                                                       (12.4)

где м — теплопроводность металла (натрий, свинец и т.д.), з — радиальный зазор.

При контакте между топливом и оболочкой твэла с жидкометаллическим подслоем в качестве величины зазора можно, по-видимому, принять сумму средних величин неровностей (шероховатостей) топлива и оболочки — Rz. В случае заполнения зазора газом тепловая проводимость зависит от большого количества фактором и с достаточной точностью не может быть определена теоретически. В практике расчета твэлов обычно пользуются экспериментальными данными. На рис. 12.1 — 12.3 представлены зависимости тепловой проводимости зазора между топливом и оболочкой в зависимости от температуры и величины зазора.

Рис.12.1. Зависимость теплой проводимости зазора при заполнении гелием: О — 38 МВт.с/кг (з=57 мкм), х — 46 МВт.с/кг (з=105 мкм), — 65 МВт.с/кг (з=0), _________ — необлученный твэл ((з=130 мкм) - - - - - - — облученный (з=100 мкм)

Рис.12.2. Зависимость теплой проводимости зазора при заполнении аргоном: О — 38 МВт.с/кг (з=57 мкм), х — 46 МВт.с/кг (з=105 мкм), — 65 МВт.с/кг (з=0), _________ — необлученный твэл ((з=130 мкм) - - - - - - — облученный (з=100 мкм)

Рис.12.3. Зависимость теплой проводимости от величины радиального  зазора для твэла реактора на быстрых нейтронах: — заполнение гелием, О — 30 % гелия и 70 % ксенона.

Стационарное поле температур в сердечнике твэла с внутренним энерговыделением qv описывается уравнением Фурье:

                                                 ,                                         (12.5)

где r — радиальная координата, T — температура, (r, T) — теплопроводность материала сердечника, являющаяся функцией температуры, пористости и состава. В общем случае это уравнение не решается в общем виде. Для грубых оценок, полагая теплопроводность и плотность объемного энерговыделения постоянными, получим:

Последнее уравнение описывает распределение температур в сердечнике в координате с максимальной температурой центра, которая по высоте практически совпадает с центром активной зоны.

Если теплопроводность зависит от температуры, то уравнение (12.5) допускает разделение переменных:

                                   .                                 (12.6)

Интеграл в левой части называется интегралом теплопроводности. Он может быть вычислен для любой начальной температуры, причем (0, Т) = (0, Тпов) + (Тпов, Т) согласно правилам интегрирования. Параметр Г определяется геометрией таблетки. Он равен 4 для сплошной таблетки и 4/[1  2ln/(2  1)] для таблетки с центральным отверстием, где  R/r0. Зависимость интеграла теплопроводности диоксида урана разной пористости от температуры при нулевой начальной температуре представлена на рис.12.4.

На рис.12.4 стрелками показан путь выбора допустимой линейной тепловой нагрузки, при которой максимальная температура в центре топлива не превышает температуры плавления с коэффициентом запаса 1,25. Следует отметить, что допустимая линейная нагрузка не является функцией диаметра твэла. Поэтому при одной и той же линейной нагрузке в твэлах меньшего диаметра реализуются более высокие градиенты температур, определяемые удельным тепловым потоком. Выбор диаметра твэла для известной линейной тепловой нагрузки является компромиссом технических и экономических требований.

Для сердечника из диоксида урана с температурой поверхности выше 500 0С интеграл теплопроводности может быть аппроксимирован зависимостью:

                                    .                                        (12.7)

В последнем выражении T4 — максимальная температура сердечника (в центре или на границе центрального отверстия).

Рис.12.4. Зависимость интеграла теплопроводности сердечника от температуры центра при Тпов = 0 0С. Показаны расчетные кривые для топлива теоретической плотности (верхняя кривая), и для пористости 3 и 5 %

В общем случае задача о распределении температур по радиусу сердечника может быть решена численно путем разбиения на конечное число концентрических цилиндров (рис.12.5).

Рис.12.5 Схема расчета температуры

Поверхностный тепловой поток и градиент температуры на границе зоны с радиусом ri равен:

                                             .                                          (12.8)

Тепловой поток на границе зоны равен:

.

Таким образом, перепад температуры в любой зоне по радиусу может быть найден из соотношения:

                                       .                                               (12.9)

При известной температуре поверхности сердечника можно получить значение температур в любой точке по радиусу. Степень точности расчетов зависит от числа разбиений, т.е. от r. Методика учитывает зависимость теплопроводности от температуры и может быть применима при изменении энерговыделения по радиусу. Распределение температур по радиусу сердечника показано на рис.12.6.

Рис.12.6. Распределение температуры по радиусу сердечника

Допустимая мощность твэла и ТВС

Как уже говорилось выше, допустимая мощность твэлов и ТВС в стационарных условиях эксплуатации определяется:

  •   предельными температурами эксплуатации оболочки твэла и элементов конструкции ТВС:
    •   предельными температурами эксплуатации топливного сердечника;
    •   обеспечением запаса до кризиса теплообмена.

Обычно в расчетах принимается, что запас мощности до плавления должен быть не менее 20 % с тем, чтобы не было расплавления в случае аварии с забросом реактивности.

Предельная мощность твэлов по кризису теплообмена, характеризуемая возникновением кризисных явлений хотя бы на одном участке твэла при заданных физических и геометрических характеристиках твэлов, зависит от расхода, температуры и давления охлаждающего теплоносителя. Условие безопасной работы твэла, определяющее допустимую мощность твэла по кризису теплообмена, может быть обеспечено, если тепловой поток в стационарном и аварийном режимах не превышает критического по всей высоте активной зоны. В конечном счете допустимая мощность твэла (qдоп) устанавливается наименьшей из всех предельных мощностей по плавлению топлива и кризису теплообмена с определенным коэффициентом запаса k (до некоторой степени произвольного в связи с недостаточной изученностью процессов теплоотвода в действующих реакторах).

Возможные отклонения физических и геометрических характеристик твэлов учитываются коэффициентом, называемым механическим k1мех. С учетом этих двух коэффициентов допустимая I мощность твэлов равна:

где qпред — наименьшая из предельных мощностей твэла по плавлению топлива и кризису теплообмена (для реакторов с натриевым и газовым охлаждением используется только коэффициент запаса по плавлению). Коэффициент запаса принимают, равным 1,1.

В реальных кассетах мощность между твэлами   распределяется неравномерно. Эта неравномерность характеризуется   коэффициентом  kk , равным отношению максимальной мощности твэла в кассете к средней.

При использовании механического коэффициента k2мех,    учитывающего отклонение физических и геометрических   характеристик ТВС от средних значений для допустимой мощности кассеты можно получить:

.

Значения критического теплового потока, приводящего к кризису теплосъема в реакторах с водяным охлаждением, приведены в предыдущей лекции.


 

А также другие работы, которые могут Вас заинтересовать

41251. ПОРЯДОК ПРОВЕДЕННЯ ЕКОЛОГІЧНОЇ ЕКСПЕРТИЗИ 71 KB
  Процедура проведення екологічної експертизи передбачає: перевірку наявності та повноти необхідних матеріалів іреквізитів на об'єкти екологічної експертизи та створення екологоекспертних комісій груп відповідно до вимог законодавствапідготовча стадія; аналітичне опрацювання матеріалів екологічної експертизи вразі необхідності натурні обстеження і проведення на їх основіпорівняльного аналізу і часткових оцінок ступеня екологічної безпеки достатності та ефективності екологічних...
41253. Формне обладнання для виготовлення форм спеціальних видів друку 66.5 KB
  Пневматична установка для натягування трафаретної тканини. Механічні установки для натягування трафаретної тканини. На поверхню ситової тканини наносять фотополімерний прошарок який є основою пробільних елементів. Таким чином для виготовлення трафаретної форми необхідно виконати такі технологічні операції: натягування ситової тканини на трафаретну раму; нанесення емульсійного прошарку на поверхню ситової тканини; експонування ситової трафаретної рами; проявлення промивання і сушка ситової тканини трафаретної рами.
41254. Загальні положення об’ємного (титриметричного) аналізу 70.5 KB
  Класифікація методів обємного аналізу за способом титрування Точність титрування Визначення нормальності робочих титрованих розчинів Обчислення в обємному методі аналізу Сутність і особливості обємного аналізу. Цей процес називають титруванням. Проте необхідно мати на увазі деякі обмеження можливості застосування обємного аналізу: 1 взаємодія повинна іти в певних стехіометричних співвідношеннях; 2 реакції повинні іти швидко інакше титрування здійснювати важко а іноді неможливо. На цій основі обємні методи поділяються на...
41255. Визначення концентрації іонів водню в розчинах кислот, основ і солей. Буферні розчини 95.5 KB
  Так для 003н розчинуHCl знаходимо pН= . Слабкі кислоти Для кислоти складу НА константа дисоціації дорівнює але Cкисл =[HА] і [H]= [А] тому Зручно користовуватися величиною рКкисл= lg Ккисл Приклад: Багатоосновні кислоти Розглядаємо константи ступінчатої дисоціації наприклад вугільної карбонатної кислоти: Н2СО3 Н НСО3 НСО3 Н СО32 рК1=65 рК2=102 Отже друга константа дисоціації в 5000 раз менша першої тому друга ступінь дисоціації не має практичного впливу на величину...
41256. Загальні положення обємного титриметричного аналізу. Сутність методу нейтралізації 121.5 KB
  Криві титрування кислот і основ. Вибір індикаторів кислотноосновного титрування. В останньому випадку титрування можливе тому що в результаті гідролізу у розчині є вільна кислота або основа. 2 наведенні інтервали переходу та відповідні кольори для деяких найбільш вживаних в аналізі індикаторів Таблиця 2 індикатор Інтервал переходу рТ Кольори Тимолсиній 13 2 червонийжовтий Метилоранжевий 35 4 червонийжовтий Метилчервоний 46 5 червонийжовтий Лакмус 68 7 червоний синій Фенолфталеїн 810 9 безбарвнийчервоний Тимолфталеїн 911 10...
41257. Приклади практичних визначень методом нейтралізації 331 KB
  Визначення кальцинованої харчової та каустичної соди та їх сумішей. Визначення карбонатної твердості води. Титриметричне визначення кислотності рідких вуглеводневих палив. Це пов'язано з тим що така кислота летка і визначення її концентрації за густиною є неточним.
41258. Криві титрування та індикатори редоксометрії 102 KB
  Криві титрування та індикатори редоксометрії. План Криві титрування. Індикатори редоксометрії Криві титрування.
41259. Встановлення нормальності перманганату калію за вихідними речовинами 83.5 KB
  З рівняння видно що окиснювальний потенціал сильно залежить від рН розчину. В іншому випадку можливий перебіг побічних процесів наприклад: Для підкислення розчину застосовуеться звичайно сірчана кмслота оскільки HCl відновлюється перманганатом а азотна кислота сама здатна виступати як окисник що зрозуміло у кількісному аналізі неприпустимо. Приготування робочого розчину Як видно з рівняння реакції еквівалентна маса KMnO4 дорівнює Ми ділемо молярну масу на 5 у даному випадку тому що молярні маси еквівалентів в окисновідновних реакціях...