19132

ДОПУСТИМАЯ МОЩНОСТЬ ТВЭЛА И ТВС

Лекция

Энергетика

ЛЕКЦИЯ 12 ДОПУСТИМАЯ МОЩНОСТЬ ТВЭЛА И ТВС Допустимая мощность твэлов и ТВС в стационарных условиях эксплуатации определяется: предельными температурами эксплуатации оболочки твэла и элементов конструкции ТВС: предельными температурами эксплуатации

Русский

2013-07-11

374.5 KB

30 чел.

ЛЕКЦИЯ 12

ДОПУСТИМАЯ МОЩНОСТЬ ТВЭЛА И ТВС

Допустимая мощность твэлов и ТВС в стационарных условиях эксплуатации определяется:

  •   предельными температурами эксплуатации оболочки твэла и элементов конструкции ТВС:
    •   предельными температурами эксплуатации топливного сердечника;
    •   обеспечением запаса до кризиса теплообмена.

В условиях максимальной проектной аварии:

  •   степенью окисления циркониевой оболочки (не более 18% от толщины);
    •  долей прореагировавшего циркония (не более 1 % массы циркония в активной зоне);
    •  температурой плавления топливного сердечника;
    •  запасом до паро-циркониевой реакции.

Распределение температур в твэле

Если заданы температура теплоносителя на входе (Твх), подогрев теплоносителя (Т) и коэффициент теплоотдачи от оболочки к теплоносителю (), то распределение температур по высоте оболочки определяется выражением:

                                .                               (12.1)

Температура на внутренней поверхности оболочки (Т2) равна:

                   ,                      (12.2)

где о — толщина оболочки, о — коэффициент теплопроводности оболочки.

Температура внешней поверхности топливного сердечника (Т3) определяется тепловой проводимостью зазора (hз) или контакта между топливом и оболочкой:

                   .          (12.3)

Тепловая проводимость или термическое сопротивление (величина обратная проводимости) между сердечником и оболочкой твэла определяется величиной зазора, составом газа в зазоре, давлением, шероховатостью поверхностей, температурой и т.д.  При заполнении зазора жидким металлом, тепловая проводимость равна:

                                                      ,                                                       (12.4)

где м — теплопроводность металла (натрий, свинец и т.д.), з — радиальный зазор.

При контакте между топливом и оболочкой твэла с жидкометаллическим подслоем в качестве величины зазора можно, по-видимому, принять сумму средних величин неровностей (шероховатостей) топлива и оболочки — Rz. В случае заполнения зазора газом тепловая проводимость зависит от большого количества фактором и с достаточной точностью не может быть определена теоретически. В практике расчета твэлов обычно пользуются экспериментальными данными. На рис. 12.1 — 12.3 представлены зависимости тепловой проводимости зазора между топливом и оболочкой в зависимости от температуры и величины зазора.

Рис.12.1. Зависимость теплой проводимости зазора при заполнении гелием: О — 38 МВт.с/кг (з=57 мкм), х — 46 МВт.с/кг (з=105 мкм), — 65 МВт.с/кг (з=0), _________ — необлученный твэл ((з=130 мкм) - - - - - - — облученный (з=100 мкм)

Рис.12.2. Зависимость теплой проводимости зазора при заполнении аргоном: О — 38 МВт.с/кг (з=57 мкм), х — 46 МВт.с/кг (з=105 мкм), — 65 МВт.с/кг (з=0), _________ — необлученный твэл ((з=130 мкм) - - - - - - — облученный (з=100 мкм)

Рис.12.3. Зависимость теплой проводимости от величины радиального  зазора для твэла реактора на быстрых нейтронах: — заполнение гелием, О — 30 % гелия и 70 % ксенона.

Стационарное поле температур в сердечнике твэла с внутренним энерговыделением qv описывается уравнением Фурье:

                                                 ,                                         (12.5)

где r — радиальная координата, T — температура, (r, T) — теплопроводность материала сердечника, являющаяся функцией температуры, пористости и состава. В общем случае это уравнение не решается в общем виде. Для грубых оценок, полагая теплопроводность и плотность объемного энерговыделения постоянными, получим:

Последнее уравнение описывает распределение температур в сердечнике в координате с максимальной температурой центра, которая по высоте практически совпадает с центром активной зоны.

Если теплопроводность зависит от температуры, то уравнение (12.5) допускает разделение переменных:

                                   .                                 (12.6)

Интеграл в левой части называется интегралом теплопроводности. Он может быть вычислен для любой начальной температуры, причем (0, Т) = (0, Тпов) + (Тпов, Т) согласно правилам интегрирования. Параметр Г определяется геометрией таблетки. Он равен 4 для сплошной таблетки и 4/[1  2ln/(2  1)] для таблетки с центральным отверстием, где  R/r0. Зависимость интеграла теплопроводности диоксида урана разной пористости от температуры при нулевой начальной температуре представлена на рис.12.4.

На рис.12.4 стрелками показан путь выбора допустимой линейной тепловой нагрузки, при которой максимальная температура в центре топлива не превышает температуры плавления с коэффициентом запаса 1,25. Следует отметить, что допустимая линейная нагрузка не является функцией диаметра твэла. Поэтому при одной и той же линейной нагрузке в твэлах меньшего диаметра реализуются более высокие градиенты температур, определяемые удельным тепловым потоком. Выбор диаметра твэла для известной линейной тепловой нагрузки является компромиссом технических и экономических требований.

Для сердечника из диоксида урана с температурой поверхности выше 500 0С интеграл теплопроводности может быть аппроксимирован зависимостью:

                                    .                                        (12.7)

В последнем выражении T4 — максимальная температура сердечника (в центре или на границе центрального отверстия).

Рис.12.4. Зависимость интеграла теплопроводности сердечника от температуры центра при Тпов = 0 0С. Показаны расчетные кривые для топлива теоретической плотности (верхняя кривая), и для пористости 3 и 5 %

В общем случае задача о распределении температур по радиусу сердечника может быть решена численно путем разбиения на конечное число концентрических цилиндров (рис.12.5).

Рис.12.5 Схема расчета температуры

Поверхностный тепловой поток и градиент температуры на границе зоны с радиусом ri равен:

                                             .                                          (12.8)

Тепловой поток на границе зоны равен:

.

Таким образом, перепад температуры в любой зоне по радиусу может быть найден из соотношения:

                                       .                                               (12.9)

При известной температуре поверхности сердечника можно получить значение температур в любой точке по радиусу. Степень точности расчетов зависит от числа разбиений, т.е. от r. Методика учитывает зависимость теплопроводности от температуры и может быть применима при изменении энерговыделения по радиусу. Распределение температур по радиусу сердечника показано на рис.12.6.

Рис.12.6. Распределение температуры по радиусу сердечника

Допустимая мощность твэла и ТВС

Как уже говорилось выше, допустимая мощность твэлов и ТВС в стационарных условиях эксплуатации определяется:

  •   предельными температурами эксплуатации оболочки твэла и элементов конструкции ТВС:
    •   предельными температурами эксплуатации топливного сердечника;
    •   обеспечением запаса до кризиса теплообмена.

Обычно в расчетах принимается, что запас мощности до плавления должен быть не менее 20 % с тем, чтобы не было расплавления в случае аварии с забросом реактивности.

Предельная мощность твэлов по кризису теплообмена, характеризуемая возникновением кризисных явлений хотя бы на одном участке твэла при заданных физических и геометрических характеристиках твэлов, зависит от расхода, температуры и давления охлаждающего теплоносителя. Условие безопасной работы твэла, определяющее допустимую мощность твэла по кризису теплообмена, может быть обеспечено, если тепловой поток в стационарном и аварийном режимах не превышает критического по всей высоте активной зоны. В конечном счете допустимая мощность твэла (qдоп) устанавливается наименьшей из всех предельных мощностей по плавлению топлива и кризису теплообмена с определенным коэффициентом запаса k (до некоторой степени произвольного в связи с недостаточной изученностью процессов теплоотвода в действующих реакторах).

Возможные отклонения физических и геометрических характеристик твэлов учитываются коэффициентом, называемым механическим k1мех. С учетом этих двух коэффициентов допустимая I мощность твэлов равна:

где qпред — наименьшая из предельных мощностей твэла по плавлению топлива и кризису теплообмена (для реакторов с натриевым и газовым охлаждением используется только коэффициент запаса по плавлению). Коэффициент запаса принимают, равным 1,1.

В реальных кассетах мощность между твэлами   распределяется неравномерно. Эта неравномерность характеризуется   коэффициентом  kk , равным отношению максимальной мощности твэла в кассете к средней.

При использовании механического коэффициента k2мех,    учитывающего отклонение физических и геометрических   характеристик ТВС от средних значений для допустимой мощности кассеты можно получить:

.

Значения критического теплового потока, приводящего к кризису теплосъема в реакторах с водяным охлаждением, приведены в предыдущей лекции.


 

А также другие работы, которые могут Вас заинтересовать

38884. Разработка САЙТА на cms joomla 2.5 2.1 MB
  Профессионально созданный сайт обеспечивает легкость его нахождения по запросам в поисковых системах, поскольку целевую аудиторию составляют пользователи, которые ищут конкретную информацию в Интернете. Постоянный контакт с клиентами и партнёрами позволяет оперативно реагировать на изменения рынка и проводить своевременную коррекцию. Кроме того, расходы на рекламу в Интернете значительно ниже, чем в традиционных средствах.
38885. Розробка програмного забезпечення для підтримки сайту виробничо-торгівельного підприємства 416.5 KB
  Сайт – це сукупність веб-сторінок, доступних у мережі Інтернет, які обєднані як за змістом, так і навігаційно. Фізично сайт може розміщуватися як на одному, так і на кількох серверах. Сайтом також називають вузол мережі Інтернет, компютер, за яким закріплена унікальна ІР-адреса, і взагалі будь-який обєкт в Інтернеті, за яким закріплена адреса, що ідентифікує його в мережі (FTP-site, WWW-site тощо).
38886. Человек, его права и свободы - высшая ценность 210.5 KB
  Общая характеристика прав человека и гражданина и становления конституционноправового института прав человека и гражданина 1. История развития прав человека и гражданина 1. Классификация прав и свобод человека и гражданина. Проблемы защиты и реализации основных прав и свобод человека и гражданина 3.
38887. Современное состояние и перспективы развития Пенсионного фонда РФ 51 KB
  1 НАЗВАНИЕ ПЕРВОГО ПАРАГРАФА Далее идет основной текст с абзацного отступа. Текст текст текст текст текст текст текст текст текст текст текст текст текст текст текст.2 НАЗВАНИЕ ВТОРОГО ПАРАГРАФА Далее идет основной текст с абзацного отступа. Текст текст текст текст текст текст текст текст текст текст текст текст текст текст текст.
38888. Средства моделирования беспроводных сенсорных сетей на базе протокола ZigBee с выбором наилучшего 3.33 MB
  Моделирование сети проводилось в программном пакете OMNET с использованием симулятора Cstli. В разделе Технологическая часть изложена полная установка и настройка программного пакета OMNET и симулятора Cstli на операционной системе Ubuntu 10.5 Структура каталогов OMNET и Cstli 60 2.1 построен симулятор различных протоколов беспроводных сенсорных сетей Cstli текущая версия 3.
38890. Створення презентації в програмі PowerPoint 2003 1.58 MB
  Можна вставити до презентації: малюнки графіку різне написання тексту надати колір тексту змінити фон презентації надати вашій презентації різних ефектних анімацій та інше.2 Основні елементи програми PowerPoint Після загрузки PowerPoint на екрані монітору відобразиться вікно Microsoft PowerPoint мал.3 Створення нової презентації PowerPoint В підрозділі Создание розділ вікна задач Создание презентации перераховані способи створення презентації мал. Клацнувши по пункті Из шаблона оформления відкриється вікно Дизайн слайда із колекції...