1915

Теоретические аспекты изучения радиоэлектронного оборудования

Шпаргалка

Коммуникация, связь, радиоэлектроника и цифровые приборы

Генераторное оборудование ЦСП. УТС активной фильтрации с непосредственным воздействием на ЗГ. УТС активной фильтрации с непосредственным воздействием на промежуточный преобразователь. Линейный кодер для двухполярного сигнала.

Русский

2013-01-06

161.66 KB

7 чел.

Генераторное обородувание ЦСП

ГО вырабатывает определенный набор импульсов для управления работой функциональных блоков аппаратуры приема и передачи, определяет скорость обработки и порядок обработки линейного сигнала. Структура ГО конкретной ЦСП определяется уровнем иерархии ЦСП и принципом формирования группового ИКМ сигнала.

УТС С ПАССИВНОЙ ФИЛЬТРАЦИЕЙ ТАКТОВОЙ ЧАСТОТЫ

Система тактовой синхронизации – необходима для синхронной и синфазной работы ГОпер. и ГОпр..

Основным элементом системы тактовой синхронизации является УТС– устройство тактовой синхронизации.

Сущность метода заключается в выделении fт. с помощью узкополосных фильтров (УПФ), резонансных цепочек (контуров) или избирательных усилителей.

+ : простота и дешевизна.

-: быстрое пропадание fт при перерывах связи или при появлении в принимаемом сигнале длинных серий нулей, образованных при простое линии;

– зависимость стабильности fт от параметров УПФ.

Узают ее на ИКМ 30 и 120

УТС активной фильтрации с непосредственным воздействием на ЗГ

где ФД – фазовый детектор;

Инт. – интегратор;

 Uрф. – напряжение разности фаз;

 Uинт. – напряжение интегрирования;

Ус – усилитель;

ЗГ – задающий генератор

Тут подстройка тактовой частоты под час тоту принимаемых импульсов осуществляется по управляющему напряжению Uрф , снимаемому с фазового детектора ФД, значение и знако которого зависят от значений и знака разности фаз входных сигналов ФД.

УТС активной фильтрации с непосредственным воздействием на промежуточный преобразователь.

Тут изменение тактовой частоты осуществляется изменением числа импульсов, поступающих на вход делителя частоты ДЧ через схему управления СУ.Управление осуществляется от сигнала с выхода ФД, пропущенного через цифровой интегратор на основе реверсивного счетчика РС.

Эти штуки более сложные и дорогие и поэтому используются на икм 480 и 1920

Принцип дискретизации СУВ

Сигналы управления и взаимодействия передаются импульсами постоянного тока только одного дискретного уровня, поэтому СУВ не подвергаются квантованию по уровню и кодированию. Дискретизация СУВ во времени осуществляется импульсными последовательностями, поступающими от генераторного оборудования. Принцип дискретизации СУВ поясняется на Рис. 1. 

Рис. 1. Принцип дискретизации СУВ:

a) Схема И

б) Временные диаграммы на входах и выходе схемы И.

Период дискретизации СУВ обычно находится в пределах 0.5-2 мс, и намного превышает период дискретизации сигналов телефонных каналов (125 мкс)

Линейный кодер для двухполярного сигнала

В состав кодера входят:

К – компаратор (сравнивающее устройство);

ГЭТ – генератор эталонных токов;

ЛУ – логическое устройство (служит для записи решений компаратора);

ПК – преобразователь кода (преобразует параллельный код в последовательный);

ГО – генераторное оборудование (управляет работой схемы и в начале тактов кодирования устанавливает все выходы ЛУ в ноль);

КЛ – ключи;

DD1, DD2 – инверторы.

Топология линейная цепь

1) Последовательная линейная цепь: все функциональные модули выстроены в линию и последовательно включены в тракт передачи.

Надежность такой топологии минимальна. Тем не менее, она широко используется на начальном этапе строительства и развития разветвленной сети, при модернизации сети связи, когда оборудование SDH устанавливается на реально существующей сети РDH.

Частный случай линейной цепитопология "точка-точка".

Топология звезда

2) Топология звезда: В центральном узле-концентраторе (DXC) объединяются ветви, построенные по топологии линейная цепь.

Недостатки:

1. невысокая надёжность в линейной цепи;

2. зависимость всех транзитных соединений от устойчивого функционирования концентратора DXC.

При таком соединении можно организовать более гибкое резервирование и возможность нескольких альтернативных путей резервирования за счет увеличения числа кабельных соединений.

Кольцо

3) Топология кольцо: наиболее распространенная топология при построении сети SDH, имеет большое количество вариантов построения, что дает возможность обеспечения резервирования различных типов.

Простейший вариант кольца: каждый ADM связан с соседним по линейному стыку. Существует два типа резервирования кольца:

При однонаправленном режиме основной трафик передается в одном направлении по активному волокну. По второму в противоположном направлении передается пустой STM-N, дублированный основной трафик и трафик имеющий низкий приоритет. В случае неисправности на основном волокне низкоприоритетный трафик сбрасывается и по резервному волокну передается основной трафик.

Недостаток: неполное полезное использование оборудования. Для исключения данного недостатка используют топологию кольцо с дополнительным связями по линейному стыку

Недостаток обоих режимов: уменьшение использования пропускной способности оборудования. Для исключения этого недостатка используют топологию кольца с дополнительными связями по линейному стыку.

ADM

ADM

ADM

ADM

ADM

ADM

ADM

ADM

ADM

ADM

ADM

ADM

ADM

ADM

ADM

ADM

Топология ячеистая

Ячеистая топология используется для соединения между несколькими сетями или между отдельно развивающимися частями одной сети. С помощью дополнительных соединений между элементами сети образуется структура, каждый элемент которой является частью нескольких колец одновременно. При объединении нескольких синхронных колец используются дополнительные связи для увеличения пропускной способности между соседними кольцами и организации резервирования передаваемого между ними трафика.

Схемы ячеистой топологии:

Треугольная. Должно быть не менее 4-х узлов.

Пятиугольная Не менее 6

Шестиугольная Не менее 10


 

А также другие работы, которые могут Вас заинтересовать

67947. Методы микробиологической диагностики холеры 92.5 KB
  Возбудителями холеры острого инфекционного заболевания с тенденцией к широкому распространению характеризующегося симптомами тяжелого гастроэнтерита с резким обезвоживанием и тяжелой интоксикацией являются два биовара Vibrio cholere: биовар cholere и биовар eltor.
67948. Микробиологическая диагностика дифтерии 66.5 KB
  Corynebacterium diphteriae (палочка Клебса Леффлера) - возбудитель дифтерии – острого инфекционного заболевания воздухоносных путей и кожных покровов, характеризующегося образованием фибринозных пленок и общей интоксикацией. Возбудитель дифтерии - Corynebacterium принадлежит к семейству Corynebacteriaceae.
67949. Микробиологическая диагностика туберкулёза 82.5 KB
  Конкретные цели: Изучить морфологию и культуральные особенности возбудителя туберкулеза. Знать какие возбудители туберкулеза являются патогенными для человека. Изучить пути передачи туберкулеза и его патогенез. Ознакомиться с методами лабораторной диагностики туберкулеза.
67950. Микробиологическая диагностика анаэробной инфекции 151 KB
  Цель: Изучение методов микробиологической диагностики терапии и профилактики столбняка ботулизма и газовой гангрены. Актуальность темы: Возбудитель ботулизма Ботулизм инфекционная болезнь характеризующаяся интоксикацией организма с преимущественным поражением ЦНС возникающее в результате...
67951. Микробиологическая диагностика чумы и туляремии 89.5 KB
  Чума (от лат. pestis) - высококонтагиозная инфекционная болезнь, вызываемая Yersinia pestis, характеризующаяся тяжелой интоксикацией, высокой лихорадкой, поражением лимфатической системы, септицемией. Возбудитель чумы открыт в 1894г. А. Йерсеном и С. Китасато.
67952. Микробиологическая диагностика бруцеллеза и сибирской язвы 103 KB
  Цель: Изучение методов микробиологической диагностики терапии и профилактики бруцеллеза и сибирской язвы. Тема 5: Микробиологическая диагностика бруцеллеза и сибирской язвы. Возбудитель сибирской язвы Сибирская язва nthrx зоонозная инфекционная болезнь вызываемая Bcillus nthrcis...
67953. Джерела ключів асиметричних криптосистем та їх властивості 95.28 KB
  У стовпці 1 наведено число бітів ключа для блочного симетричного шифру. У стовпці 2 подано алгоритми симетричних криптографічних перетворень. У стовпці 3 поданий мінімальний розмір параметрів для крипто перетворень(стандартів0, що ґрунтуються на перетвореннях у кінцевих полях.
67955. Микробиологическая диагностика бордетеллиозов и клебсиеллезов 97 KB
  Коклюш - инфекционная болезнь, вызываемая Bordetella pertussis, характеризующаяся приступами спазматического кашля. Наблюдается преимущественно у детей дошкольного возраста. Возбудитель коклюша был открыт в 1906 г. Ж. Борде и О. Жангу. Таксономия. Возбудитель коклюша относится к отделу Gracilicutes, роду Bordetella.