19155

Теплоизоляция и принципы теплового расчета

Лекция

Производство и промышленные технологии

ОСНОВЫ КОНСТРУИРОВАНИЯ КРИОГЕННЫХ УСТРОЙСТВ Лекция 2 Теплоизоляция и принципы теплового расчета Изза малой величины теплоты парообразования жидких хладагентов особенно жидкого гелия вопросы теплоизоляции рабочего объема играют ключевую роль при разработке р

Русский

2013-07-11

67.5 KB

6 чел.

ОСНОВЫ КОНСТРУИРОВАНИЯ КРИОГЕННЫХ УСТРОЙСТВ

Лекция 2

Теплоизоляция и принципы теплового расчета

Из-за малой величины теплоты парообразования жидких хладагентов (особенно жидкого гелия) вопросы теплоизоляции рабочего объема играют ключевую роль при разработке различных низкотемпературных устройств.

Прежде всего необходимо создать условия, при которых отсутствует прямой конвективный теплообмен между криообъемом и окружающей средой. Для этого применяют так называемую высоковакуумную изоляцию, которая заключается в вакуумной откачке пространства между внешним корпусом и рабочей емкостью (рис.2.1).

При достаточно низких давлениях 10-5 –10-6 мм рт.ст. конвективным теплообменом уже можно пренебречь. Однако остаются три других канала теплопритока к жидкому хладагенту:

  •  теплопроводность остаточного газа;
  •  приток тепла за счет теплопроводности труб, опор, подвесок, измерительных проводов, токовводов;
  •  лучистый теплообмен.

Очевидно, что для уменьшения суммарного теплопритока требуется уменьшить каждую компоненту теплопритока до приемлемого уровня. Ниже мы рассмотрим принципы расчета подводимой мощности к хладагенту и разберем возможные способы ее минимизации.

2.1. Теплопередача за счет теплопроводности остаточного газа

Теплопроводность газа слабо меняется в широком интервале давлений. По мере понижения давления до 10-3 мм рт.ст. и ниже длина свободного пробега молекул l оказывается больше расстояния d между ограничивающими поверхностями и молекулы пролетают от теплой стенки с температурой Т2 к холодной с температурой Т1 без межмолекулярных соударений. В этом режиме молекулярного течения теплопроводность газа становится функцией числа молекул, то есть давления.

Для уменьшения притоков тепла за счет теплопроводности газа следует максимально понизить давление в вакуумной полости, что достигается откачкой форвакуумными и диффузионными насосами, предварительной очисткой и прогревом внутренних вакуумных поверхностей. Значение остаточного давления должно составлять 10-5 –10-6 мм рт.ст.

Средняя длина l свободного пробега молекул обратно пропорциональна давлению и зависит от природы газа и его температуры (таблица 2.1). Так, для воздуха при Т = 293 К и давлении 1 Па длина свободного пробега l1 = 6,710-3 мПа [5]. При любом другом давлении

где p – давление газа в Па; l –  в м.

Таблица 2.1

Средняя длина свободного пути молекул различных газов при давлении 1 Па.

Газы

l103, мПа

600 К

298 К

77 К

4,2 К

N2

20,8

8,67

1,26

0,0061

O2 

16,9

7,02

1,00

0,0047

Ar

16,7

6,79

0,933

0,0042

CO2

11,6

4,32

0,492

0,0019

Ne

30,7

13,9

2,50

0,0165

Kr

14,1

5,52

0,691

0,0029

H2

28,2

12,2

0,197

0,0108

Xe

10,5

3,93

0,448

0,0017

H2O

13,9

4,38

0,391

0,0013

Воздух

16,0

6,72

0,995

0,0048

He

43,6

19,1

3,13

0,0174

Величина средней длины свободного пробега молекул l необходима для определения степени вакуума. Для этого l сравнивают с эффективным размером вакуумной системы dэф. Для молекул газа внутри сферического сосуда диаметром D эффективный размер камеры dэф = 2/3D , для трубы бесконечной длины диаметром D dэф = D, а для двух бесконечных параллельных плоскостей, расположенных на расстоянии  друг от друга, dэф = 2D.

Критерий Кнудсена или число Кнудсена определяется как

Kn = l/dэф.

В зависимости от значения критерия Кнудсена различают вакуум низкий, средний и высокий.

Низкий вакуум – это состояние газа, при котором взаимные столкновения между молекулами преобладают над столкновениями молекул газа со стенками вакуумной камеры. Такое состояние газа соответствует условию Kn<<1. При этом длина свободного пути молекул газа значительно меньше размеров вакуумной камеры. Из условия изменения режима течения газа принимают Kn<<510-3. При напылении в низком вакууме столкновения молекул газа с молекулами распыляемого вещества не дают возможность получить на стенках камеры изображение экрана, поставленного на пути пучка.

Средний вакуум – это состояние газа, когда частоты соударений молекул друг с другом и со стенками  вакуумной камеры одинаковы, при этом l  dэф, а Kn  1.

Высокий вакуум – это состояние газа, при котором столкновения молекул газа со стенками вакуумной камеры преобладают над взаимными столкновениями молекул газа. При этом Kn>1. В этом случае изображение экрана, поставленного на пути молекулярного пучка, получается отчетливым. Из условий изменения течения газа принимают Kn≥1,5. Тогда условие существования среднего вакуума можно записать в виде 510-3 <Kn<1,5.

В криогенной технике интерес представляет только ситуация высокого вакуума, для которой производится расчет теплопроводности остаточного газа.

При соударениях молекул газа с ограничивающей стенкой между ними не происходит полного обмена энергией, то есть тепловое равновесие между стенкой и соударяющимися молекулами не устанавливается, что характеризуется коэффициентом аккомодации Кнудсена . Иными словами, коэффициент аккомодации характеризует неполноту обмена энергией между молекулами газа и поверхностью. Коэффициент аккомодации зависит от природы газа и твёрдого тела. На его величину также оказывают влияние температура, состояние поверхности твёрдого тела, наличие на ней адсорбированных газов и т.д. Приближённые значения коэффициентов аккомодации на чистых металлических поверхностях приведены в табл. 2.2.


Таблица 2.2

Приближенные значения коэффициентов аккомодации

Температура, К

Коэффициенты аккомодации  

гелия

водорода

воздуха

300

78

20

0,29

0,42

0,59

0,29

0,53

0,97

0,8 – 0,9

1,00

1,00

Плотность теплового потока между двумя поверхностями (концентрические сферы, коаксиальные цилиндры, параллельные пластины), обусловленного теплопроводностью остаточного газа в режиме l>>d,  можно рассчитать по формуле

где q в Вт/м2; R = 8310 Дж/(Ккмоль) – универсальная газовая постоянная; – молярная масса газа; р – давление;  = Сp/Cv – показатель адиабаты; T – температура, измеренная в месте регистрации давления (как правило, комнатная);

общий коэффициент аккомодации,  где 1,2 – коэффициенты аккомодации выпуклой и вогнутой поверхностей соответственно; S1, S2 – площади поверхностей выпуклого и вогнутого тела.

   Выражение (2.2) можно упростить, если подставить значение R:

где р в паскалях. Или:

где р в мм рт.ст.

Если подставить значения  и  для газов (см. табл. 1.4) и принять Т = 295К, то выражение (2.5) можно записать в виде:

где q в Вт/м2; р – давление  в мм рт.ст.; константа С в данном случае безразмерна и равна 160 для воздуха, азота; 283  для гелия.

Основная трудность при вычислении q обусловлена неопределенностью величины коэффициента аккомодации. Опыты показывают, что 0 для чистой металлической поверхности по отношению к гелию может составлять всего 0,025. Вместе с тем и расчеты, и практика показывают, что при давлении ниже 10-6 мм рт.ст. теплопроводностью остаточного газа можно пренебречь.

PAGE  5

EMBED Equation.3  

EMBED Equation.3  


 

А также другие работы, которые могут Вас заинтересовать

50750. Формы в html 54 KB
  На цій лабораторній роботі я навчився створювати і використовувати форми у HTML-документах.
50751. Створення, налагодження та розміщення сайту на сервері в мережі Інтернет 614.5 KB
  Тут наводяться адреси телефони факси інші контактні дані головного офісу і філій компанії. Часто публікуються імена посади і навіть фотографії співробітників що займаються певними напрямками діяльності компанії їх робочі телефони та emil адреси. Логотип компанії. Ліцензії патенти дозвільні документи якщо діяльність компанії підлягає ліцензуванню.
50752. Оптимізація веб-сторінки. Додавання кнопок та фонових елементів 639.5 KB
  На цій лабораторній роботі я навчився опановувати елементи web-дизайну, використовуючи кнопки, фон, оптимізаційні методи у формуванні сторінки
50753. Програмування графіки засобами CSS 200.5 KB
  Мета: Отримати навички програмування графіки засобами CSS. Обладнання: ПЕОМ IBM PC, текстовий редактор, Internet Explorer.
50754. Програмування графіки засобами CSS та Html, використовуючи список, що випадає 230 KB
  Мета: Отримати навички програмування графіки засобами CSS. Обладнання: ПЕОМ IBM PC, текстовий редактор, Internet Explorer.
50756. Разработка первого приложения 491.5 KB
  Структура документа Notes обычно определяется формой form содержащей в себе ряд полей. Например документ касающийся политики и процедурных вопросов может включать в себя такие поля как дата название политики ее краткий обзор а также полный текст с ее описанием; документ относящийся к обслуживанию клиентов может содержать в себе дату имя клиента идентификационный номер клиента имя оператора текстовое поле для описания запроса клиента а также поле статуса запроса. Когда Notes открывает пользователю вид то названия...
50757. Разработка приложения 154 KB
  Теоретическая часть: Свойства Представления Вида. Для получения доступа к окну свойств вида если он загружен в рабочую панель Domino Designer можно воспользоваться пунктом меню Design View Properties. При этом появляется окно свойств вида с шестью закладками. Закладка View Info информация о виде выглядит следующим образом: В первой секции окна определяются: имя вида Nme его алиас lis и комментарии Comment расшифровывающие предназначение данного вида.
50758. Знакомство с объектами Lotus Disigner 380.5 KB
  Теоретическая часть: Меню Создать С разделом Поле мы уже знакомились в предыдущих работах. После того как общее поле определено для вставки его в форму нужно установить курсор в теле формы на место где это поле должно находиться и воспользоваться меню Crete Resource Insert Shred Field. Для создания графического изображения нужно установить курсор в теле формы на место где это изображение должно находиться и воспользоваться пунктами меню Crete Picture. Размещения Imge Resource на форме осуществляется через пункты...