19157

Теплопритоки к жидкому хладагенту. ОСНОВЫ КОНСТРУИРОВАНИЯ КРИОГЕННЫХ УСТРОЙСТВ

Лекция

Производство и промышленные технологии

ОСНОВЫ КОНСТРУИРОВАНИЯ КРИОГЕННЫХ УСТРОЙСТВ Лекция 4 Теплопритоки к жидкому хладагенту. 1. Лучистый теплообмен Тепловое излучение является разновидностью электромагнитных волн. Перенос тепла излучением может происходить как в видимой 04  076 мкм так и в инфракра...

Русский

2013-07-11

69 KB

5 чел.

ОСНОВЫ КОНСТРУИРОВАНИЯ КРИОГЕННЫХ УСТРОЙСТВ

Лекция 4

Теплопритоки к жидкому хладагенту.

1. Лучистый теплообмен

Тепловое излучение является разновидностью электромагнитных волн. Перенос тепла излучением может происходить как в видимой (0,4 0,76 мкм), так и в инфракрасной (0,76 420 мкм) областях спектра. Последнюю разделяют на три части: ближнюю с длинами волн 0,76 15 мкм, среднюю (15 100 мкм) и дальнюю (100 420 мкм). Для области низких температур характерны процессы переноса тепла волнами длиной 0,76 100 мкм.

Удельная (на единицу площади) мощность излучения абсолютно черного тела (коэффициенты поглощения и излучения равны единице) в условиях теплового равновесия подчиняется закону Стефана – Больцмана

q = T4 ,                                                              (1)

где  q в Вт/м2,  5,6710-8 Вт/(м2К4) – постоянная Стефана – Больцмана, Т – температура абсолютно черного тела.

Считается, что для серых тел, то есть тел, коэффициент излучения у которых = const< 1, закон Стефана – Больцмана также справедлив и  имеет вид

q = T4.                                                            (2)

Нетрудно показать, что в системе плоскопараллельных пластин удельная мощность теплового потока (плотность потока излучения) от пластины с температурой Т2  к пластине с температурой Т1 равна:

где

приведённый коэффициент излучения. Здесь 1, 2 – коэффициенты излучения тел с температурами соответственно Т1 и Т2.

Реальные значения для материалов, наиболее часто используемых в криогенике, имеют порядок величины 10-2 – 10-1, т.е. сильно отличаются от значения абсолютно черного тела. Коэффициенты излучения некоторых материалов приведены в таблице 1. Конечно, надо иметь в виду, что эти значения весьма приблизительны, так как коэффициенты излучения сильно зависят от состояния поверхности. Так, коэффициент излучения для  полированной меди при 115 °С составляет 0,025, а после окисления поверхности при 600 °С увеличивается до 0,55 – 0,57.

Вместе с тем общие закономерности по отношению к коэффициентам излучения различных материалов таковы: металлы с наименьшим электрическим сопротивлением обладают наименьшим коэффициентом излучения, у сплавов  больше, чем у чистых металлов, с понижением температуры  уменьшается, загрязнение поверхностей увеличивает .

Таблица  1

Коэффициент теплового излучения различных материалов

Материал

Коэффициент теплового излучения

при 77-90 К

при 300 К

Алюминий

Железо

Медь

Никель

Серебро

Золото

Хром

Латунь (Л62)

Нержавеющая сталь 12Х18Н10Т

0,030

0,017

0,020

0,013

0,010

0,065

0,029

0,055

0,040

0,027

0,025

0,030

0,015

0,015

0,080

0,040

0,075

Полный поток излучения вычисляется путем умножения плотности потока на площадь S облучаемой поверхности:

Из формул (2) и (3) видно, что подводимую за счет излучения мощность можно резко снизить, уменьшая температуры излучаемой поверхности. В реальных конструкциях гелиевых криостатов это достигается применением одного или нескольких экранов, имеющих температуру около 100 К. Для этого экраны охлаждаются либо азотом, либо обратным потоком газообразного гелия.

Другим эффективным способом уменьшения теплового потока является применение неохлаждаемых экранов, расположенных между излучающей и холодной стенкой. Анализ теплового потока системы плоскопараллельных пластин с экранами между ними показывает, что наличие экранов существенно уменьшает приведенный коэффициент излучения и, следовательно, снижает тепловой поток от теплой стенки к холодной.

Для расчета коэффициента теплового излучения при наличии экранов с различными значениями  применяется общее выражение:

где 1,2 – приведенный коэффициент излучения тел с температурами соответственно Т1 и Т2; i коэффициент излучения i-го экрана. В частном случае, когда в системе n одинаковых экранов, коэффициент теплового излучения, а значит. и плотность потока излучения уменьшается в n+1 раз.

При конструировании низкотемпературных устройств с применением неохлаждаемых тепловых экранов важно помнить, что экраны не должны касаться друг друга. В случае соприкосновения экранов их температура выравнивается, и они начинают работать как один, а не несколько экранов. Также отметим, что в формулы для расчета теплопереноса за счет излучения не входит расстояние между поверхностями (в том числе и между экранами). Поэтому, с точки зрения габаритов и массы криостата, промежуток между охлаждаемыми поверхностями следует делать как можно меньше.

Одним из способов существенного уменьшения теплопритока за счет излучения является использование так называемой экранно-вакуумной теплоизоляции (ЭВТИ).

ЭВТИ представляет собой систему отражающих экранов, размещенных в вакууме. В качестве отражающих экранов может использоваться практически любой материал. Однако, при разработке ЭВТИ руководствуются следующими принципами:

- с целью уменьшения числа экранов, необходимо выбирать материал с возможно меньшим коэффициентом излучения. Таким требованиям удовлетворяют медь, алюминий, серебро, золото;

- основная расчетная формула (2) справедлива в случае теплового равновесия между нагретыми телами, охлаждаемыми телами и экранами. Следовательно, чтобы время установления этого равновесия было как можно меньше, теплоемкость и масса экранов должны быть минимальны. На практике это означает, что экраны должны иметь минимально возможную толщину.

Промышленно выпускаемая ЭВТИ представляет собой композит из отражательного экрана и прокладки. Отражательным экраном является полиэфирная пленка толщиной 312 мм, имеющая алюминиевое покрытие около 50 нм с каждой стороны. Коэффициент излучения такого экрана равен Э 0,02. Прокладка, разделяющая экраны, выполнена на основе минеральных и синтетических волокон с малым коэффициентом теплопроводности. Масса прокладок составляет 10 г/м2, толщина 3550 мкм. При монтаже криостатов ЭВТИ наматывается на охлаждаемую поверхность с плотностью укладки 2040 слоев на сантиметр. При этом отражательные слои разделены тепловой прокладкой и, следовательно, имеют разную температуру.

При практическом использовании ЭВТИ основная сложность возникает при создании в сосуде высокого вакуума. Поэтому применять ЭВТИ следует только в тех случаях, когда использование азотоохлаждаемого экрана осложнено по техническим условиям (например, в компактных проточных криостатах).

В реальных конструкциях теплоперенос осуществляется не только между плоскопараллельными, но и между вогнутыми и выпуклыми поверхностями. В этом случае при расчетах приведенного коэффициента излучения необходимо учитывать, какая часть полусферического лучистого потока, испускаемого одним телом, падает на другое тело. Если поверхности расположены произвольно в пространстве, расчет довольно сложен [6]. Однако в простых геометриях, встречающихся на практике (коаксиальные цилиндры, концентрические сферы и т.п.), при вычислении приведенного коэффициента излучения расчет учитывает геометрический фактор, который чаще всего равен отношению площадей вогнутого и выпуклого тел.

Ниже приведем сводную таблицу для расчета приведенного коэффициента излучения для разных случаев. При расчете мощности теплового потока необходимо использовать формулу (2), вычисляя значения приведенного коэффициента излучения по формулам из таблицы 2. В таблице 2 используются следующие обозначения: 1, 2 – коэффициенты излучения охлаждаемых и нагретых тел; Э –коэффициент излучения экранов; n – число экранов; S1, S2 – площади соответственно выпуклого, вогнутого тела и Sэ - площадь экрана.


Таблица 2.

Расчет приведенного коэффициента излучения

Тела

Теплообмен излучением в системе тел

Без экрана

С n экранами

Плоско-параллельные

 

С оболочкой (длинные коаксиальные цилиндры, концентрические сферы и т.д.)

PAGE  5

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  


 

А также другие работы, которые могут Вас заинтересовать

34767. Научное познание и его специфические признаки. Методы научного познания 46 KB
  Методы научного познания. Так в зависимости от роли и места в процессе научного познания можно выделить методы формальные и содержательные эмпирические и теоретические методы исследования и изложения и т. Выделяют также качественные и количественные методы методы непосредственного и опосредованного познания оригинальные и производные и т. В этом плане все методы научного познания по степени общности и сфере действия могут быть разделены на пять основных групп: Философские методы среди которых наиболее древними являются диалектический и...
34768. Здоровье как ценность, философия здоровья человека 28.5 KB
  В большинстве стран был принят целый ряд юридических документов государственных масштабов по экологическому контролю за деятельностью промышленных и других предприятий по охране окружающей среды и здоровья человека. сформировался культ здоровья и здорового образа жизни как поощряемого и престижного способа существования. Культ здоровья и здорового образа жизни является жизненно важным делом лишь для очень небольшого количества людей в основном энтузиастов.
34769. Проблема жизни и смерти в духовном опыте человека. Философия о смысле жизни, смерти и бессмертии. Право на смерть 67.5 KB
  Философия о смысле жизни смерти и бессмертии. В чем смысл жизни Постановка проблемы В жизни каждого нормального человека рано или поздно наступит момент когда он задается вопросом о конечности своего индивидуального существования. Наличием такого знания в духовном опыте человека в значительной степени и объясняется острота с которой перед ним встает вопрос о смысле и цели жизни.
34770. Понятие истины. Объективность истины. Принципы: корреспонденции, когеренции и прагматизма. Гносеологическая, логическая и онтологическая формы истины 42.5 KB
  Объективность истины. Гносеологическая логическая и онтологическая формы истины. Абсолютные истины складываются на основе относительных.
34771. Истина как процесс. Диалектика абсолютной и относительной истины 39.5 KB
  Диалектика абсолютной и относительной истины. Конвенциональная концепция истины считает истинное знание или его логические основания результатом конвенции соглашения. Разброс мнений достаточно велик однако наибольшим авторитетом и самым широким распространением пользовалась и пользуется классическая концепция истины берущая свое начало от Аристотеля и сводящаяся к корреспонденции соответствию знания объекту. Классическая концепция истины хорошо согласуется с исходным гносеологическим тезисом диалектикоматериалистической философии о том...
34772. Истина, ложь, заблуждение. Конкретность истины. Ложь «во спасение». Проблема врачебных ошибок 41.5 KB
  Конкретность истины.В философии понятие истины совпадает с комплексом базовых концепций позволяющих различить достоверное и недостоверное знание по степени его принципиальной возможности согласовываться с действительностью по его самостоятельной противоречивости непротиворечивости а также в рамках разведения полезности и бесполезности эффективности и неэффективности. категория истины обладает двойственной характеристикой. уклонение от истины принимаемое нами за истинное суждение; основывается всегда на неверности по существу самих...
34773. Практика как критерий истины. Абсолютность и относительность практики как критерия истины 43 KB
  Абсолютность и относительность практики как критерия истины К сожалению фактически все попытки решить проблему критерия истины не увенчались успехом. следует выделить две особенности практики как критерия истины: 1. Это достигается в процессе материального воплощения мышления в человеческой практики. С его помощью невозможно доказать немедленно непосредственно истинность или ложность тех или иных научных теорий которые выходят за пределы возможностей самой практики обусловленной историческим отрезком времени.
34774. Практика как специфический способ отношения человека к миру. Формы практической деятельности. Специфика медицинской практики 34 KB
  Формы практической деятельности. Интегративные функции практики по отношению к другим формам жизнедеятельности В сфере реального отношения людей к миру к природе к обществу к другим людям формируются исходные стимулы развитии всех форм человеческой культуры. Создаваемые в культуре и в материальном производстве и в регуляции отношений между людьми в обществе и наконец в сфере науки искусства философии способы деятельности возникают но сути своей как ответ па определенные проблемы и задачи связанные с воспроизводством...
34775. Глобальные проблемы современности. Философский анализ и решение. Альтернативы будущего 42.5 KB
  Остановим внимание на названных и в первую очередь на экологической проблеме в силу тех причин что все происходящее на планете Земля с участием человека или без него протекает и в природе. Геосфера поверхность Земли как необитаемая так и пригодная для жизни человека. Ноосфера ноо разум область разумной деятельности человека онрделяемая в конечном счете уровнем человеческого интеллекта и объемом перерабатываемой его мозгом информации. С целью их разгадки все сферы взаимоотношений природы и человека были условно разделены на...