19157

Теплопритоки к жидкому хладагенту. ОСНОВЫ КОНСТРУИРОВАНИЯ КРИОГЕННЫХ УСТРОЙСТВ

Лекция

Производство и промышленные технологии

ОСНОВЫ КОНСТРУИРОВАНИЯ КРИОГЕННЫХ УСТРОЙСТВ Лекция 4 Теплопритоки к жидкому хладагенту. 1. Лучистый теплообмен Тепловое излучение является разновидностью электромагнитных волн. Перенос тепла излучением может происходить как в видимой 04  076 мкм так и в инфракра...

Русский

2013-07-11

69 KB

5 чел.

ОСНОВЫ КОНСТРУИРОВАНИЯ КРИОГЕННЫХ УСТРОЙСТВ

Лекция 4

Теплопритоки к жидкому хладагенту.

1. Лучистый теплообмен

Тепловое излучение является разновидностью электромагнитных волн. Перенос тепла излучением может происходить как в видимой (0,4 0,76 мкм), так и в инфракрасной (0,76 420 мкм) областях спектра. Последнюю разделяют на три части: ближнюю с длинами волн 0,76 15 мкм, среднюю (15 100 мкм) и дальнюю (100 420 мкм). Для области низких температур характерны процессы переноса тепла волнами длиной 0,76 100 мкм.

Удельная (на единицу площади) мощность излучения абсолютно черного тела (коэффициенты поглощения и излучения равны единице) в условиях теплового равновесия подчиняется закону Стефана – Больцмана

q = T4 ,                                                              (1)

где  q в Вт/м2,  5,6710-8 Вт/(м2К4) – постоянная Стефана – Больцмана, Т – температура абсолютно черного тела.

Считается, что для серых тел, то есть тел, коэффициент излучения у которых = const< 1, закон Стефана – Больцмана также справедлив и  имеет вид

q = T4.                                                            (2)

Нетрудно показать, что в системе плоскопараллельных пластин удельная мощность теплового потока (плотность потока излучения) от пластины с температурой Т2  к пластине с температурой Т1 равна:

где

приведённый коэффициент излучения. Здесь 1, 2 – коэффициенты излучения тел с температурами соответственно Т1 и Т2.

Реальные значения для материалов, наиболее часто используемых в криогенике, имеют порядок величины 10-2 – 10-1, т.е. сильно отличаются от значения абсолютно черного тела. Коэффициенты излучения некоторых материалов приведены в таблице 1. Конечно, надо иметь в виду, что эти значения весьма приблизительны, так как коэффициенты излучения сильно зависят от состояния поверхности. Так, коэффициент излучения для  полированной меди при 115 °С составляет 0,025, а после окисления поверхности при 600 °С увеличивается до 0,55 – 0,57.

Вместе с тем общие закономерности по отношению к коэффициентам излучения различных материалов таковы: металлы с наименьшим электрическим сопротивлением обладают наименьшим коэффициентом излучения, у сплавов  больше, чем у чистых металлов, с понижением температуры  уменьшается, загрязнение поверхностей увеличивает .

Таблица  1

Коэффициент теплового излучения различных материалов

Материал

Коэффициент теплового излучения

при 77-90 К

при 300 К

Алюминий

Железо

Медь

Никель

Серебро

Золото

Хром

Латунь (Л62)

Нержавеющая сталь 12Х18Н10Т

0,030

0,017

0,020

0,013

0,010

0,065

0,029

0,055

0,040

0,027

0,025

0,030

0,015

0,015

0,080

0,040

0,075

Полный поток излучения вычисляется путем умножения плотности потока на площадь S облучаемой поверхности:

Из формул (2) и (3) видно, что подводимую за счет излучения мощность можно резко снизить, уменьшая температуры излучаемой поверхности. В реальных конструкциях гелиевых криостатов это достигается применением одного или нескольких экранов, имеющих температуру около 100 К. Для этого экраны охлаждаются либо азотом, либо обратным потоком газообразного гелия.

Другим эффективным способом уменьшения теплового потока является применение неохлаждаемых экранов, расположенных между излучающей и холодной стенкой. Анализ теплового потока системы плоскопараллельных пластин с экранами между ними показывает, что наличие экранов существенно уменьшает приведенный коэффициент излучения и, следовательно, снижает тепловой поток от теплой стенки к холодной.

Для расчета коэффициента теплового излучения при наличии экранов с различными значениями  применяется общее выражение:

где 1,2 – приведенный коэффициент излучения тел с температурами соответственно Т1 и Т2; i коэффициент излучения i-го экрана. В частном случае, когда в системе n одинаковых экранов, коэффициент теплового излучения, а значит. и плотность потока излучения уменьшается в n+1 раз.

При конструировании низкотемпературных устройств с применением неохлаждаемых тепловых экранов важно помнить, что экраны не должны касаться друг друга. В случае соприкосновения экранов их температура выравнивается, и они начинают работать как один, а не несколько экранов. Также отметим, что в формулы для расчета теплопереноса за счет излучения не входит расстояние между поверхностями (в том числе и между экранами). Поэтому, с точки зрения габаритов и массы криостата, промежуток между охлаждаемыми поверхностями следует делать как можно меньше.

Одним из способов существенного уменьшения теплопритока за счет излучения является использование так называемой экранно-вакуумной теплоизоляции (ЭВТИ).

ЭВТИ представляет собой систему отражающих экранов, размещенных в вакууме. В качестве отражающих экранов может использоваться практически любой материал. Однако, при разработке ЭВТИ руководствуются следующими принципами:

- с целью уменьшения числа экранов, необходимо выбирать материал с возможно меньшим коэффициентом излучения. Таким требованиям удовлетворяют медь, алюминий, серебро, золото;

- основная расчетная формула (2) справедлива в случае теплового равновесия между нагретыми телами, охлаждаемыми телами и экранами. Следовательно, чтобы время установления этого равновесия было как можно меньше, теплоемкость и масса экранов должны быть минимальны. На практике это означает, что экраны должны иметь минимально возможную толщину.

Промышленно выпускаемая ЭВТИ представляет собой композит из отражательного экрана и прокладки. Отражательным экраном является полиэфирная пленка толщиной 312 мм, имеющая алюминиевое покрытие около 50 нм с каждой стороны. Коэффициент излучения такого экрана равен Э 0,02. Прокладка, разделяющая экраны, выполнена на основе минеральных и синтетических волокон с малым коэффициентом теплопроводности. Масса прокладок составляет 10 г/м2, толщина 3550 мкм. При монтаже криостатов ЭВТИ наматывается на охлаждаемую поверхность с плотностью укладки 2040 слоев на сантиметр. При этом отражательные слои разделены тепловой прокладкой и, следовательно, имеют разную температуру.

При практическом использовании ЭВТИ основная сложность возникает при создании в сосуде высокого вакуума. Поэтому применять ЭВТИ следует только в тех случаях, когда использование азотоохлаждаемого экрана осложнено по техническим условиям (например, в компактных проточных криостатах).

В реальных конструкциях теплоперенос осуществляется не только между плоскопараллельными, но и между вогнутыми и выпуклыми поверхностями. В этом случае при расчетах приведенного коэффициента излучения необходимо учитывать, какая часть полусферического лучистого потока, испускаемого одним телом, падает на другое тело. Если поверхности расположены произвольно в пространстве, расчет довольно сложен [6]. Однако в простых геометриях, встречающихся на практике (коаксиальные цилиндры, концентрические сферы и т.п.), при вычислении приведенного коэффициента излучения расчет учитывает геометрический фактор, который чаще всего равен отношению площадей вогнутого и выпуклого тел.

Ниже приведем сводную таблицу для расчета приведенного коэффициента излучения для разных случаев. При расчете мощности теплового потока необходимо использовать формулу (2), вычисляя значения приведенного коэффициента излучения по формулам из таблицы 2. В таблице 2 используются следующие обозначения: 1, 2 – коэффициенты излучения охлаждаемых и нагретых тел; Э –коэффициент излучения экранов; n – число экранов; S1, S2 – площади соответственно выпуклого, вогнутого тела и Sэ - площадь экрана.


Таблица 2.

Расчет приведенного коэффициента излучения

Тела

Теплообмен излучением в системе тел

Без экрана

С n экранами

Плоско-параллельные

 

С оболочкой (длинные коаксиальные цилиндры, концентрические сферы и т.д.)

PAGE  5

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  


 

А также другие работы, которые могут Вас заинтересовать

27851. Токовая защита трансформаторов от многофазных КЗ со ступенчатой характеристикой выдержки времени 137 KB
  Токовая защита трансформаторов от многофазных КЗ со ступенчатой характеристикой выдержки времени. Ставится двухступенчатая защита: т. В ряде случаев защита дополняется защитой от однофазного КЗ на стороне НН. В городских замкнутых сетях напряжением до 1 кВ для селективного отключения одного трансформатора должна предусматриваться токонаправленная защита.
27852. Защита трансформаторов 6-10 / 0,4 кВ от КЗ на землю 78 KB
  В нейтрали ток не должен превышать 25 от номинального тока трансформатора. ZТР полное электрическое сопротивление трансформатора питающего сеть. Xот≈Х1т Раз так то достаточно МТЗ для защиты трансформатора . Если расстояние от трансформатора до линии 30 метров то защиту от однофазных замыканий на землю можно не ставить.
27853. Дифференциальная токовая защита трансформатора: особенности выполнения в зависи 130.5 KB
  в связи с этим в обмотке реле появляется дополнительная составляющая тока небаланса. Он в 68 раз больше номинального тока трансформатора. Время полного затухания переходного тока намагничивания может достигать нескольких секунд но по истечении времени 0305 сек.
27854. Дифференциальная токовая отсечка трансформатора: схема и расчет. Общая оценка дифференциальных защит трансформаторов 58 KB
  1Отстройка от бросков тока намагничивания достигается ICP с учётом действия реле РНТ. А в схемах косвенного действия времени срабатывания реле тока и выходного промежуточного реле. Если трансформаторы тока выбраны так что их погрешность не более 10 то отстройка от броска тока намагничивания обеспечивается также отстройка и от тока максимального небаланса при внешних КЗ при условии дополнительного различия тока циркуляции. токовой отсечки простота однако изза большого тока срабатывания защиты отсечка не уменьшает чувствительность.
27855. Схемы соединения обмоток трансформаторов напряжения 232 KB
  Если напряжение более 500 В то между предохранителями и системой разъединитель. Реле 456 включены на фазное напряжение относительно нулевой точки вторичных междуфазных напряжений. Реле 123 включены на линейное напряжение. не может контролировать фазное напряжение относительно земли.
27856. Дифференциальная защита трансформатора с реле РНТ-565 (схема, расчет) 179 KB
  Звезда треугольник€ 11 питание со стороны звезды КСХ= КСХ€=1 со стороны НН треугольник в минимальном режиме работы питающей системы ЭС и при максимальном сопротивлении питающего трансформатора. Ток срабатывания защиты берётся со стороны питания. МДС с одной стороны равна МДС другой стороны. стороны трансф.
27857. Дифференциальная защита трансформатора с торможением (схема, расчет) 86 KB
  для отстройки защит от броска тока намагничивания и от максимальных значений установившегося первичного тока небаланса максимального расчётного необходимо соответствующим образом выбрать ток срабатывания защиты минимальный и число витков торм. Далее расчёт витков НТТ основной и неосновной обмоток и максимальный первичный ток небаланса выполняется точно так же как и для реле РНТ в соответствии с таблицей. Дополнением к этому расчёту является выбор числа витков тормозной обмотки. FСРмин=100 А витков FРАБ=IРАБWРАБ Fторм=IтормWторм...
27858. Причины отклонения частоты в энергосистеме. Автоматическая частотная разгрузка 38.5 KB
  Смысл АЧР заключается: при дефиците мощности частота начинает снижатся в сети уже при частоте равной 48 Гц система разваливается. АЧР отключает наименее ответственные потребители восстанавливая таким образом баланс мощности. Величина мощности отключаемой устройством АЧР должна определятся с учётом того что в общем случае мощность потребляемой нагрузки зависит от частоты и снижается вместе с ней. 1 2...
27859. Схема устройства АВР на переменном оперативном токе в установках ниже 1000 В. Схе 145.5 KB
  Схема устройства АВР на переменном оперативном токе в установках ниже 1000 В. Схемы устройств АВР в установках выше 1000 В. АВР двигателей. Схемы и устройство АВР на переменном оперативном токе на установках меньше 1000В.