19168

Топливные циклы ядерных реакторов. Материалы сердечника твэлов

Лекция

Энергетика

Топливные циклы ядерных реакторов. Материалы сердечника твэлов Ядерным топливом принято считать материал содержащий нуклиды которые делятся при взаимодействии с нейтронами. Делящимися нуклидами являются: находящийся в природном уране изотоп 235U изотопы плутония 23...

Русский

2013-07-11

48.5 KB

15 чел.

Топливные циклы ядерных реакторов. Материалы сердечника твэлов

Ядерным топливом принято считать материал, содержащий нуклиды, которые делятся при взаимодействии с нейтронами. Делящимися нуклидами являются: находящийся в природном уране изотоп 235U, изотопы плутония 239Pu, 241Pu  и 233U, искусственно получаемые в ходе ядерных реакций из 238U и тория. Изотопы урана и плутония с нечетными массовыми числами делятся под воздействием как тепловых, так и быстрых нейтронов. Природные изотопы, 238U и  232Th подвергаются делению быстрыми нейтронами, но вклад этого деления в получение энергии невелик. Последнее относится и к искусственным изотопам плутония с четными массовыми числами.

Ядерное топливо, содержащее только природные нуклиды, называется первичным. Топливо, содержащее нуклиды, полученные искусственным путем, — вторичным. Основная масса природного урана (238U) и весь находящийся в природе торий (232Th) представляют собой природный ядерный материал, пригодный для воспроизводства, т.е. для получения искусственно делящихся изотопов или вторичного ядерного топлива. На современном этапе развитие атомной энергетики базируется на природном уране. Природный уран состоит из трех изотопов. Основной его изотоп 238U имеет период полураспада Т1/2, соизмеримый с возрастом нашей планеты. По этой причине, где бы не добывали природный уран, его изотопный состав всюду одинаков:

238U — 99,2831 %,        T1/2 = 4,51109 лет;

235U — 0,7115 %,         T1/2 = 0,71109 лет;

234— 0,0054 %,         T1/2 = 27,0106 лет.

Большинство проектируемых и действующих в настоящее время ядерных реакторов работают на уране, обогащенном изотопом 235U. Обогащенный уран — полученная искусственным путем смесь изотопов урана, в которой содержание 235U превышает его нормальную концентрацию в природном уране. Как правило, обогащение топлива в реакторах на тепловых нейтронах не превышает 6 %. Основная часть природного урана — изотоп 238U практически не делится в реакторе, но при захвате нейтрона превращается в делящийся изотоп — плутоний, который в природе не встречается. Процесс протекает по следующей реакции:

238U + 1n = 239U (23,5 мин)  239Np(2,3 сут)  239Pu.

Подобные реакции приводят к воспроизводству делящегося изотопа урана из тория:

232Th + 1n = 233Th – (23,3 мин)  233Pa – (27,4 сут)  233U.

Следовательно, рациональное использование природного урана теснейшим образом связано с наработкой и развитием технологий дальнейшего использования вторичного топлива. Реализация ториевого топливного цикла в ближайшее время проблематична из-за технических трудностей, связанных с высокой радиоактивностью продуктов реакции. Наиболее подготовленным путем рационального использования топлива является уран-плутониевый цикл. В современных энергетических реакторах на тепловых нейтронах коэффициент воспроизводства (отношение числа образовавшихся изотопов плутония к числу разделившихся ядер) равен 0,4 — 0,7. В сопоставимом по мощности реакторе на быстрых нейтронах коэффициент воспроизводства достигает значений 1,1 — 1,3, что позволяет перерабатывать весь загружаемый уран во вторичное топливо. В настоящее время количество плутония, накопленного в результате эксплуатации реакторов на тепловых нейтронах, измеряется сотнями тонн. Кроме того, в ряде стран велики запасы плутония, получаемого для военных целей. Хранить его до лучших времен, когда будут построены новые крупные реакторы на быстрых нейтронах, дорого. Есть обстоятельства, ограничивающие сроки хранения. В частности, во вторичном топливе, накопленном в реакторах на тепловых нейтронах, содержится 12 — 14 % 241Pu с периодом полураспада около 14 лет. При распаде образуется 241Am, являющийся мощным -излучателем. Заводы по производству твэлов без дополнительных затрат не могут работать с топливом, содержащим более 1 % 241Am, а дополнительная очистка плутония от америция существо повышает затраты в топливном цикле. Следует также учесть, что при хранении теряется делящийся изотоп плутония.  При хранении в течение 10 лет теряется 9 %, а за 20 лет — 14 %. Сказанное приводит к тому, что наработанный плутоний через два-четыре года следует использовать в топливном цикле.

Схемы возможных топливных циклов показаны на рис.3.2, 3.3.

Топливный цикл

Первым звеном в топливном цикле является горнодобывающее производство, т.е. урановый рудник, где добывается уран. Вблизи месторождения создаются обогатительные заводы, предназначенные для получения из  руды концентрата с содержанием урана 60-80 %. Это товарный продукт первого звена предприятий топливного цикла — горнодобывающего производства.

Из уранового концентрата далее должен быть получен либо металлический уран, либо газообразное соединение — гексафторид урана, пригодное для процесса разделения изотопов урана. Таким образом, вторым звеном предприятий топливного цикла может быть либо получение металлического урана, либо производство гексафторида природного урана.

Следующее звено — разделение изотопов урана, сырьем для которого является гексафторид природного урана. Конечным, товарным продуктом этого производства является гексафторид урана с заданным содержанием изотопа 235U. В качестве побочного продукта в отвале получается гексафторид обедненного урана, который конвертируется в оксид и складируется  для возможного будущего использования.

Гексафторид обогащенного урана конвертируется в диоксид урана или другое соединение (топливную композицию). Из порошка диоксида урана путем прессования и спекания получают топливные таблетки, которыми снаряжают тепловыделяющие элементы. Предприятия по изготовлению твэлов и сборке их в ТВС составляют следующее звено топливного цикла. Товарной продукцией этого звена является топливо в виде твэлов и ТВС, пригодных для непосредственной загрузки в реактор.

Загруженные в реактор твэлы с обогащением Хн работают заданное время, в течение которого концентрация 235U снижается в них до значения Хк. Количество накопившихся продуктов деления возрастает до значения , а плутония — до Z. По достижении заданного выгорания твэлы выгружаются из реактора с измененным изотопным составом. Из-за высокой радиоактивности выгруженные твэлы не могут быть немедленно подвергнуты переработке для извлечения оставшихся и накопленных ценных продуктов деления, поэтому следующей операцией в топливном цикле является выдержка отработавших твэлов.

После выдержки топливо направляется  либо на радиохимический завод по переработке топлива, либо в места длительного хранения. Товарной продукцией на этом этапе можно считать твэлы, пригодные для химической переработки.

Следующее звено топливного цикла — предприятия по химической переработке отработавших твэлов. На вход этого предприятия поступают тепловыделяющие сборки после выдержки. После механической разделки и удаления конструкционных материалов из ТВС извлекается топливо. Затем отработавшее топливо поступает в цепочку для растворения, извлечения урана и плутония и очистки от продуктов делений. В процессе очистки топлива от продуктов деления его активность должна быть снижена до уровня, сравнимого с активностью природного урана и приемлемого для дальнейшего использования на заводах сублимации и разделения изотопов. Продукцией завода по химической переработке является уран в виде соединений, удобных для последующего использования (диоксид урана, уранилнитрат), а также соединения плутония. Выделяют некоторые продукты деления и трансурановые элементы для дальнейшего использования в различных отраслях. Обогащение урана, регенерируемого на заводе по химической переработке, остается равным Хк. Изотопный состав выгруженного из реактора топлива определяется типом реактора и глубиной выгорания.

Для последующего использования обогащение топлива должно быть доведено до Хн. Для этого полученные на заводе по химической переработке соединения урана переводят в гексафторид для последующего обогащения. Таким образом, топливо вернулось на разделительный завод, где регенерированное топливо обогащают до нужного содержания делящегося изотопа. На каждом этапе переработки ядерного топлива имеют место безвозвратные потери урана (плутония) в виде жидких, газообразных или твердых отходов, которые не могут быть возвращены в цикл. Небольшая часть урана не извлекается и удаляется вместе с продуктами деления при очистке отработавшего топлива. Обедненный уран уходит в отвал и, следовательно, также выводится из топливного цикла.

Требования к топливу

Основные требования к топливу для твэлов ядерных реакторов показаны на рис.3.4.

Наибольшую ядерную плотность имеют металлические урана и плутоний, но их использование в твэлах энергетических реакторов проблематично вследствие низкой размерной стабильности и наличия фазовых переходов в области рабочих температур (Рис. 5, 6).

Важным  следствием  накопления  продуктов  делений  в процессе работы топлива является увеличение  объема  или  распухание.  При  температурах  ниже 1000-1100 С, когда сопротивление деформированию топлива является большим, распухание пропорционально количеству накопившихся осколков делений. В зависимости от их химического состояния и температуры скорость объемного распухания лежит в пределах  0,8 — 1,2 %  на  один  процент  выгорания  или  (3,3 — 5,1) × 10-23 см3/дел в абсолютном выражении. При температурах ниже 800 С в инженерных расчетах скорость ползучести принимается равной 1 % на процент выгорания. В области более высоких температур увеличение объема определяется деформацией топливной матрицы под действием давления газообразных продуктов делений в газонаполненных порах. Скорость распухания контролируется сопротивлением деформированию матрицы и увеличивается по экспоненциальному закону с повышением температуры.

Другой причиной изменения объема топливного сердечника является радиационное уплотнение — уменьшение пористости в процессе облучения. Процесс контролируется растворением исходных пор осколками делений. Наибольший вклад в радиационное уплотнение дают поры размером менее 2 мкм.

Наилучшей размерной стабильностью из представленных соединений имеют диоксиды урана и плутония, однако их ядерная плотность и теплопроводность  (Рис.8) существенно ниже по сравнению с другими.

Нитриды и карбиды имеют хорошую теплопроводность, высокую ядерную плотность, но их размерные изменения при облучении достаточно высоки.

Главное для технологов:

возможность получения топлива с помощью простых, безопасных операций;

стоимость производства;

возможность обеспечения качества;

воспроизводимость свойств топлива.

По перечисленным выше причинам, а так же с учетом радиационной стойкости на всех энергетических реакторах мира используется топливо в виде оксидов.


 

А также другие работы, которые могут Вас заинтересовать

34306. Модели и методы оценки технологических процессов 23.5 KB
  Модели и методы оценки технологических процессов В настоящее время можно выделить три основных подхода к изучению научнотехнического развития прва описанию технологий и их развития: экономический подход технократический или пифагорский подход системный подход. В рамках экономического подхода развивалось направление связанное с решение задач планирования научнотехнического развития прва для обеспечения заданного необходимого прироста объема выпуска продукции использование так называемых балансовых методов планирования. С целью...
34307. Понятие о системах технологических процессов 24 KB
  Понятие о системах технологических процессов. Система это целое составленное из отдельных частей ке находятся в тесном отношении между собой . Технологическая система это совокупность взаимосвязанных предметов производства исполнителей и направлено на выполнение отдельных операций и процессов в целом. Между операцией в технологическом процессе и системах можно считать условленным так как они имеют опред.
34308. Исторические этапы развития систем технологий 27.5 KB
  В своем развитии системы технологических процессов прошли ряд исторических этапов. Однако сознательная организация системы технологических процессов произошла в средневековье. Впервые организованная система технологических процессов проявила себя в цехах ремесленников. По структуре цехи ремесленников представляли собой систему параллельных технологических процессов.
34309. Классификационные признаки систем технологий 23 KB
  Важнейшим признаком характеризующим технологические системы является их структура. Механизированная отличается использованием различных механизмов для осуществления как рабочих так и вспомогательных процессов в элементах системы участок станков машиностроительного предприятия. Жесткая связь подсистем характеризуются немедленным прекращением функционирования технологической системы в целом при отказе хотя бы одной подсистемы. При нежесткой связи между элементами системы возможно непродолжительное функционирование системы в случае...
34310. Структура технологической системы производства 25.5 KB
  Структура технологической системы производства. Свойства элементарных технологических процессов распространяются и на технологические системы более высокого иерархического уровня которые образованы совокупностями технологических процессов. Таким образом технологическую систему производства образуют параллельные последовательные и комбинированные системы технологических процессов. Еще одним важным фактором в формировании технологических систем являются технологические связи между элементами системы а также их характер.
34311. Взаимосвязь технологических и организационных структур производства 26 KB
  Взаимосвязь технологических и организационных структур производства. Характер формирования систем технологических процессов а также связей между ними имеет определяющее значение для формирования управляющих воздействий. Поэтому можно четко проследить взаимосвязь технологических и организационных структур производства. Например ремесленный цех с его ярко выраженной параллельной системой технологических процессов на определенном этапе исторического развития видоизменился в мануфактуру с последовательными технологическими процессами.
34312. Специфика развития параллельных и последовательных технологических систем 26 KB
  Перевод слабых составляющих системы на более высокую ступень позволит улучшить характеристики системы так как в ней ликвидируются звенья которые обуславливали в наибольшей степени неудовлетворительное функционирование системы. Таким образом ориентация на два различных типа развития позволит ставить задачу определения предпочтительности одного из них применительно к составляющим элементам параллельной системы. Такое целенаправленное развитие дает больший эффект чем при одновременном развитии всех составляющих изза различной готовности...
34313. Основные закономерности и направления развития систем технологических процессов 23.5 KB
  При этом важной особенностью развития технологических систем является их тип параллельной или последовательной связи элементов системы. Технологические системы в общем случае развиваются как и технологические процессы эволюционным и революционным путем. Однако системы технологических процессов неоднородны по восприятию рационалистического и эвристического развития. Как и в случае развития технологических процессов необходимым и достаточным условием революционного развития является совершенствование рабочих процессов хотя бы в...
34314. Реальный и потенциальный уровень технологии системы 25.5 KB
  Реальный и потенциальный уровень технологии системы. Реальная технологическая система характеризуется не только величиной уровня технологии который соответствует конкретным пропорциям между производительностью и затратами прошлого труда то есть реальным уровнем технологии но и максимальным потенциальным уровнем технологии который может быть достигнут в данной технологической системе при неизменных уровнях технологии ее составляющих. Потенциальный уровень технологии является верхней границей достижение которой будет означать что...