19171

Твэлы и ТВС исследовательских, транспортных и транспортабельных реакторов

Лекция

Энергетика

Лекция 6 Твэлы и ТВС исследовательских транспортных и транспортабельных реакторов По сравнению с энергетическими реакторами к твэлам исследовательских и транспортных реакторов предъявляются дополнительные требования связанные со спецификой их эксплуатации: ...

Русский

2013-07-11

1.84 MB

20 чел.

Лекция 6

Твэлы и ТВС исследовательских, транспортных и транспортабельных реакторов

По сравнению с энергетическими реакторами к твэлам исследовательских и транспортных реакторов предъявляются дополнительные требования, связанные со спецификой их эксплуатации:

  •  безопасность и надежность при минимальных массовых характеристиках реактора;
  •  локализация продуктов деления внутри топливной композиции;
  •  обеспечение теплосъема при высоких (до 2500 Вт/см2) тепловых нагрузках;
  •  отсутствие тепловых барьеров между топливной композицией и оболочкой;
  •  развитая поверхность охлаждения;
  •  обеспечение работоспособности в переходных режимах эксплуатации.

Эти требования могут быть обеспечены путем использования дисперсионных твэлов.

Твэлы на основе дисперсионного ядерного топлива

Твэлами дисперсионного типа называют такие, в сердечнике которых топливо находится в виде частиц, равномерно распределенных в непрерывной матрице из неделящегося материала. Сердечники твэлов дисперсионного типа представляют собой композиции ядерного топлива в виде делящихся материалов (233U 235U, 239Рu) или их химических соединений и матрицы из металлов, сплавов, керамики, графита и других неделящихся материалов, а также 238U, 232Th или их сплавов и соединений.

Основные требования к твэлам

  •  гарантированное отсутствие разгерметизации твэла;
  •  необходимое соотношение топлива, замедлителя, теплоносителя и конструкционных материалов;
  •  совместимость сердечника с оболочкой и оболочки с теплоносителем;
  •  развитая поверхность теплосъема;
  •  простота конструкции и технологии;
  •  равномерность распределения топлива;
  •  совместимость топлива с матрицей;
  •  надежный тепловой контакт топлива с матрицей и матрицы с оболочкой.

Основные требования к ТВС

  •  обеспечение распределения теплоносителя по активной зоне в соответствие с энерговыделением;
  •  обеспечение надежного охлаждения каждого твэла в ТВС;
  •  обеспечение свободы передвижения твэлов при изменении размеров;
  •  отсутствие механических нагрузок на твэлы со стороны ТВС;
  •  обеспечение дистанционирования твэлов.

Дисперсионный твэл сочетает в себе прочность керамического топлива с пластичностью матрицы и ее хорошими ядерно-физическими и антикоррозионными свойствами, теплопроводностью и т. д. Процессы деления, происходящие в ядерном топливе, и сопутствующие им повреждения сосредоточиваются почти полностью в топливной частице, окруженной матрицей. Однако часть матрицы, соприкасающаяся с ядерным топливом, подвержена действию осколков деления. Для предварительного анализа радиационной стойкости твэлов дисперсионного типа можно предположить, что глубина проникновения продуктов деления в материал матрицы определяется только их энергией. Толщина шарового слоя поврежденной матрицы, окружающего топливную частицу, равна длине пробега осколков деления в материале матрицы. Усредненные значения длин свободных пробегов продуктов деления (для упрощения полагают их одинаковыми для тяжелых и легких осколков деления) характеризуются значениями, приведенными в табл.1.

Таблица 1

Средний свободный пробег осколка делений в материалах

Материал

Средний свободный пробег

Линейный, мкм

Массовый, мг/см2

Уран

6,8

12,6

Диоксид урана

9,4

6,1

Цирконий

9,1

5,8

Желзо

6,7

5,2

Алюминий

13,7

3,7

Предположение об образовании вокруг топливной частицы «пояса порчи» подтверждается хорошим соответствием расчетных и экспериментальных данных; так, среднее значение толщины поврежденного слоя композиции UO2 — нержавеющая сталь (облучение при 500 °С, выгорание 30%), определенное экспериментально, составляет 5,5 мкм, значение толщины слоя, полученное расчетным путем, составляет 6,6 мкм

Материал матрицы можно рассматривать состоящим из двух частей:  неповрежденной и поврежденной (рис.1).

Рис.1 Структура дисперсионной топливной композиции

Необходимым условием сохранения первоначальных свойств матрицы является непрерывность ее неповрежденной части, т. е. расстояние между частицами d должно быть таким, чтобы отсутствовало касание или перекрывание поврежденных шаровых слоев. Это расстояние зависит от объемной доли топливной фазы Vf  и размера частиц. Для расположения топливных частиц диаметром D1 по ГЦК решетке предложена следующая зависимость, связывающая эти параметры:

.

В общем случае расстояние между топливными частицами включает два участка: поврежденный и не поврежденный:

                                                  d = d1+2.

Возможный состав дисперсионного твэла представлен на рис. 2. 

Рис.2. Возможный состав дисперсионного твэла

Пластинчатые твэлы

Варианты пластинчатых твэлов показаны на рис.3.

Их отличительными способностями является развитая поверхность теплосъема, однако механически они малоустойчивы.

Рис.3. Варианты ТВС с пластинчатыми твэлами

Для удержания пластинчатых твэлов в точном пространственном положении относительно друг друга применяют различные дистанционирующие устройства в виде опорных боковых и кольцевых пластин.

Кольцевые твэлы

ТВС с кольцевыми твэлами показана на рис.4. Твэлы представляют собой тонкостенные трубы разного диаметра из топлива, диспергированного в матрице, заключенные в тонкостенную оболочку. В исследовательских реакторах в качестве матрицы и оболочки часто используются сплавы алюминия. Обладая всеми преимуществами пластинчатых твэлов, кольцевые твэлы более устойчивы. Сборка в ТВС предполагает большое число способов дистанционирования твэлов.

Рис.4. ТВС с кольцевыми твэлами

Стержневые твэлы

Простой способ дистанционирования особенно в тесных решетках может быть реализован путем использования твэлов, оболочка которых имеет выступы (ребра) по всей длине (рис.5). Дистанционирование осуществляется закручиванием твэла вдоль оси с определенным шагом.

Рис.5. Самодистанционирующиеся стержневые твэлы

Максимальные требования по надежности в переходных режимах предъявляются к твэлам транспортных реакторов. Для транспортных и исследовательских реакторов разработаны различные варианты крестообразных твэлов (рис.6). Такая форма позволяет увеличить поверхность теплосъема в 2 — 2,5 раза по сравнению с цилиндрическими стержневыми твэлами, что позволяет без существенного увеличения температуры повысить мощность реактора.  Твэлы позволяют повысить выгорание, поскольку распухание топливной композиции компенсируется округлением их профиля (выпрямлением вогнутых участков). Для дополнительной компенсации распухания может быть предусмотрена центральная полость. Дистанционирование может быть выполнено закручиванием твэлов или другими средствами.

Рис.6. Твэл транспортного реактора

Рис.7. ТВС транспортного реактора

Каждая топливная сборка содержит 31 топливный элемент и 6 выгорающих поглотителей, расположенных как это показано на рис.7. Поглощающие стержни представляют собой цилиндрические трубы из нержавеющей стали, заполненные композицией, содержащей смесь изотопов гадолиния. Внешний диаметр оболочки поглотителя равен 5,4 мм, толщина стенки 0,14 мм. Расстояние между противоположными гранями шестиугольной соты топливной сборки 6,8 см, расстояние между центрами двух соседних сборок 7,2 см.

Технологии диспергирования топлива с успехом могут быть использованы для твэлов энергетических реакторов. Для реактора ВВЭР–100 разработана керметная  композиция: диоксид урана (объемная доля не менее 60%) в матрице из циркониевого сплава (рис.8). Между топливной матрицей и оболочкой расположен слой чистого металла, обеспечивающий надежный термический контакт. Этот твэл позволит значительно повысить безопасность реактора за счет: снимания максимальной температуры тепловыделяющего сердечника до 600° С и, как следствие, уменьшения в 1,5-2 раза количества аккумулированной тепловой энергии в активной зоне; снижения выхода продуктов деления из сердечника, по крайней мере, на три порядка; повышения геометрической стабильности (приращение диаметра оболочки не более 1% за время эксплуатации); сохранения твэлов работоспособными даже после максимальной проектной аварии типа LOCA.

Рис.8. Керметный стержневой твэл для реактора ВВЭР–1000

Твэлы для высокотемпературных реакторов

Одним из направлений развития ядерной энергетики является повышение температуры теплоносителя. Во-первых, это приведет к увеличению КПД энергетической установки, во-вторых — появится возможность использовать реакторы для технологических процессов в металлургии, химии и т.д.

Температура теплоносителя на выходе из реактора должна иметь значения 900 — 1200 0С. При таких температурах практически единственным конструкционным материалом в активной зоне является графит. Изготовление стержневых твэлов из графита невозможно в силу его малой прочности и хрупкости. По этой причине используют твэлы в виде шаров или призм.  Вариант конструкции шарового твэла показан на рис.9.

Рис.9. Вариант конструкции шарового твэла

Твэл представляет собой шар с оболочкой из графита диаметром 60 мм. Внутри оболочки находятся микротвэлы, содержащие топливо. Для предотвращения разрушения микротвэлов и выхода продуктов деления топливо окружено многослойным покрытием из графита, пирографита и карбида кремния. Микротвэлы диспергированы в в графитовой матрице.


Матрица

Топливо

оврежденный слой

D1        d1


 

А также другие работы, которые могут Вас заинтересовать

58247. Военные походы фараонов 45.5 KB
  С какой целью фараон создавал войско Из кого состояло войско Развитие какого ремесла позволило создать хорошо вооруженное войско Войско состояло из пехоты и колесниц. Это позволило создать колесничное войско. Во всех важнейших сражениях он лично командовал войском. О если бы не его величество говорили они да живет он да здравствует да будет благополучен мы никогда бы не разгромили вражеское войско.
58248. Психологічна сумісність 53 KB
  Мета: учні повинні знати: Що таке психологічна сумісність; Значення понять: характер темперамент; Типи темпераменту характеру; Сумісність типів темпераменту характеру.
58249. Табличный процессор Microsoft Excel. Назначение и интерфейс 422.5 KB
  Образовательная цель урока: Изучение и первичное закрепление знаний; Актуализация ведущих знаний ;Ввести понятия табличный процессор и электронная таблица; Сформировать понятия: ячейка строка столбец адрес ячейки диапазон блок ячеек рабочий лист книга.
58250. Исследование процесса работы пользователей с информационной системы учета электропогружного оборудования скважин (ИС «ЭПОС») 3.02 MB
  В результате данной работы было спроектирована, разработана и внедрена подсистема оповещения в ИС «ЭПОС», устраняющая недостатки в работе ИС «ЭПОС». Разработаны и реализованы спецификации требований на внесение изменений в ИС «ЭПОС».
58252. Носовой гласный переднего ряда во французском языке 146.5 KB
  Положение всех органов речи то же, что и при [ε]. Язык должен упираться в нижние резцы, иначе звук будет похож на [α̃]. Нёбная занавеска отходит от стен фаринкса и включает носовой резонатор.
58254. СПОСОБЫ ВЫРАЖЕНИЯ МНЕНИЯ В НАУЧНОМ ТЕКСТЕ ЧЕРЕЗ ПРИЗМУ КАТЕГОРИИ СУБЪЕКТИВНОЙ МОДАЛЬНОСТИ 82.23 KB
  Целью данной работы является исследование научного текста и выявление способов выражения мнения в научном тексте при помощи категории субъективной модальности.