19173

Технология получения порошков диоксида урана

Лекция

Энергетика

ЛЕКЦИЯ 8 Технология получения порошков диоксида урана Получение UO2 через аммонийуранилтрикарбонат АУКпроцесс Трикарбонатоуранилат аммония NH4[UO2С033] или аммонийуранилтрикарбонат АУК является хорошим исходным соединением для получения порошков UO2 керамическ

Русский

2013-07-11

184 KB

36 чел.

ЛЕКЦИЯ 8

Технология получения порошков диоксида урана

Получение UO2 через аммонийуранилтрикарбонат (АУК-процесс)

Трикарбонатоуранилат аммония (NH4[UO2(С03)3]) или аммонийуранилтрикарбонат (АУК) является хорошим исходным соединением для получения порошков UO2 керамического сорта. Они получаются по более простой схеме, чем через полиуранат аммония и с более стабильными свойствами. Гидролиз UF6 и осаждение урана в виде аммонийуранилкарбоната осуществляется в одном аппарате. Этот процесс описывается следующей реакцией:

UF6+5H2O+10NH3+3CO2Þ(NH4)4[UO2(CO3)3]+ 6NH4F

Процесс может быть осуществлен в периодическом или непрерывном исполнении. В отличие от АДУпроцесса, качество осадка АУК мало зависит от кислотности раствора, хотя по техническим соображениям во избежание вспенивания при повышении температуры рН раствора стремятся поддерживать в узком диапазоне (7,8-8,6).

Кристаллы АУК значительно крупнее кристаллов полиураната аммония (10-40 мкм), а их удельная площадь поверхности мала и составляет около 0,2 м2/г, т.е. во много раз меньше, чем у полиураната аммония.

Керамические свойства получаемых порошков UO2 во многом определяются режимами термического разложения АУК и восстановления промежуточных продуктов разложения до UO2. Конечным продуктом при прокалке в водороде является диоксид:

(NH4)4[UO2(CO3)3]+H2 Þ4NH3+3CO2+3H2O+ UO2

Свежеприготовленный и не пассивированный стехиометричный UO2 легко окисляется на воздухе, что затрудняет обращение с ним. Для  стабилизации рекомендуется обрабатывать его воздушно-паровой смесью. При этом кислородный коэффициент повышается до 2,05-2,15 и  UO2 становится более устойчивым к окислению. В отличие от АДУ-процесса, АУК-процесс обладает хорошими аффинажными возможностями. Поэтому порошки UO2, получаемые по этой технологии, по целому ряду примесей чище порошков, получаемых по АДУ-процессу. Порошки имеют развитую поверхность  в интервале 3 — 6,5 м2/г, обладают высокой текучестью (3 — 8) г/с. Важным достоинством является то, что таблетки из порошков АУК можно прессовать без пластификатора.

Использование порошков без предварительной подготовки и связки позволяет получать таблетки на нижнем пределе допустимой плотности (10,4 г/см3). Для получения таблеток с большей плотностью необходимо проводить измельчение порошков в мельницах (рис.1). После этой операции, вследствие потери текучести, необходима операция специальной подготовки порошков.

Рис.1. Влияние измельчения порошков на плотность спеченных таблеток:

S=5,17 м2/г, S=5,84 м2

Технологическая схема получения порошков через АУК показана на рис.2.

Рис.2. Технологическая схема получения порошков через АУК — процесс

Получение UO2  пирогидролизом UF6 в печах кипящего слоя

Водные процессы переработки UF6 обеспечивают получение порошков UO2 керамического сорта с заданными свойствами. Вместе с тем на протяжении многих лет в разных странах изучаются,  разрабатываются и широко используются так называемые сухие или газовые методы получения порошков диоксида урана. Суть их заключается в обработке UF6 в газообразной фазе газообразными реагентами, в результате чего образуются твердые промежуточные продукты, конвертируемые далее в UO2. Привлекательность этих способов заключается в относительной простоте процессов, отсутствии больших объемов жидких радиоактивных отходов, сравнительно небольшом расходе реагентов, достаточно полной утилизации фтора, менее жестких требованиях обеспечения ядерной безопасности, поскольку на всех стадиях технологического процесса в продуктах содержится небольшое количество влаги. К недостаткам этих способов относится образование большого количества радиоактивных аэрозолей, более трудный подбор коррозионностойких материалов. Это способы не пригодны для переработки различных отходов, образующихся в производстве UO2 и бракованных таблеток.

В газовых методах восстановительный гидролиз UF6 с получением UO2 проводят при повышенных температурах (200 — 700 0C), поэтому правильнее эти процессы называть пирогидролизом. Процесс осуществляется с использованием водорода и паров воды.

Конверсия UF6 в UO2 может протекать с образованием нескольких промежуточных соединений. В результате собственно пирогидролиза Ш6 образуется уранилфторид, который затем водородом восстанавливается до диоксида:

UF6+2H2O→ UO2F2 +4HF

 UO2F2+H2UO2+2HF

Возможно   образование   и   других   промежуточных   соединений, например, UO3:

UO2F2+H2O→ UO3+2HF

UO3+H2→ UO2+ H2O

Во всех случаях суммарная реакция одинакова:

UF6+2H2O+H2→ UO2+6HF

Содержание фтора в диоксиде после восстановления UO2F2 водородом зависит от времени и температуры (рис.3).

Рис.3. Зависимость содержания фтора от температуры и времени восстановления

Рис.4. Схема трубчатого вращающегося реактора для конверсии UF6 в UО2 :

I - головная камера; 2 - разгрузочная камера; 3 - вращающаяся обогреваемая реторта; 4 - фильтры; 5 - шнек для подачи продуктов в печь; 6 - отражательные перегородки; 7 – разгрузочная камера; 8 – разгрузочный шнек, 9 - бункер

В головной камере имеются сопла для подачи UF6 и перегретого водяного пара. В донной части головной камеры имеется шнек 2, служащий для подачи образующегося уранилфторида в первую реакционную зону печи. В реторте имеются отражательные перегородки, препятствующие обратному поступлению образующегося UF в разгрузочную камеру. Они также способствуют перемешиванию продукта и тем самым улучшают массообмен в реакторе. Перегретый водяной пар и UF6 через сопла поступают в верхнюю часть головной камеры, температура на стенках которой поддерживается на уровне 250 — 300 0C. Избыток водяного пара составляет около 100 %. Для предотвращения забивания инжекционных сопел и для обдувки фильтров в верхнюю часть камеры подают инертный газ. За счет экзотермического эффекта реакции гидролиза UF6 температура газопылевой смеси повышается до 850 — 900 0C. Объем камеры сравнительно большой и в несколько раз превышает объем печи. Это сделано для увеличения времени нахождения в ней продуктов и образования более крупных частиц UO2F2,  которые легче выделить из газового потока. Газовый поток, содержащий мелкую пыль, пропускают через циклоны и металлические фильтры, а образующийся  UO2F2 оседает на дно головной камеры и с помощью шнека 2 перемещается во вращающуюся реторту. Реторта, в которой осуществляется противоток твердой и газообразной фаз, имеет две температурные зоны. Каждая зона имеет свой нагреватель. В первой зоне, куда поступает UO2F2, поддерживается температура в пределах 600 — 760 0C. Сюда же противотоком подается водород. В этой зоне и осуществляется в основном конверсия UO2F2 в оксиды урана. Их состав зависит от температуры в этой зоне печи и расхода восстановителя. Из первой зоны оксиды поступают во вторую, температура в которой поддерживается в пределах 640 — 800 0C. Здесь происходит довосстановление и глубокое обесфторивание UO2. Превращение UO2F2 в UO2 сопровождается уменьшением удельной площади поверхности порошков с 5 — 6 до 2 — 2,5 м2/г. Время пребывания твердых продуктов в печи (до 5 ч) зависит от ее наклона, который регулируют подъемником 1. Готовый продукт с помощью шнека 8 подается в разгрузочный бункер 9.

Получаемые в этом процессе первичные порошки UO2 имеют дендритную структуру с хорошо разветвленной поверхностью (удельная площадь поверхности 5 — 6 м2/г). При обесфторивании в трубчатой печи в условиях высоких температур и при постоянном окатывании происходит сфероидизация частиц порошка, сопровождающаяся значительным уменьшением удельной поверхности порошка.

Получение UO2 пирогидролизом UF6 в пламенном реакторе

Термодинамический анализ реакции взаимодействия UF6 с парами воды и водородом показывает, что UF6 может быть превращен непосредственно в UO2 в кислородно-водородном пламени. Успешному осуществлению этого процесса способствует высокая температура, низкое давление и избыток водорода и паров воды. Эта предпосылка и явилась основой изучения и разработки процесса конверсии UF6 в UO2 в пламенных аппаратах. Химизм суммарного процесса здесь такой же, как и в других газовых способах конверсии  UF6:

UF6+2H2O+H2→ UO2+6HF

Однако в этом случае образуется ряд промежуточных соединений:

UF6+2H2O→ UO2F2+4HF

UF6+H2O →UO3+2HF

3UO2+ O2U3O8

Возможно образование других промежуточных соединений. Изменяя условия проведения процесса, можно в той или иной степени подавлять какую-то из этих реакций, но полностью исключить   присутствие   в   готовой   продукции   фторсодержащих соединений не удается. Таким образом, осуществить в промышленных условиях одностадийный процесс конверсии UF6 в UO2 в газопламенном   аппарате   с   получением   кондиционных   порошков UO2 керамического сорта не удалось. В получаемом диоксиде урана обнаруживаются в разных количествах практически все указанные выше промежуточные соединения. В зависимости от условий проведения процесса содержание фтора в таком продукте колеблется от 3-4 до 15 %. Обесфторивание продукта до требуемых пределов может быть осуществлено во вращающейся печи в атмосфере водорода в присутствии паров воды при температуре 800 —1000 оС. Так возник двухстадийный газопламенный способ конверсии UF6 в UO2.

Рис.5. Головная часть пламенного реактора

Разработано много вариантов аппаратурного оформления процесса. Схематический чертеж одного из вариантов головной части пламенного реактора приведен на рис. 5.

Пламенный реактор представляет собой вертикальную трубу, в верхней части которой смонтирована горелка, служащая для подачи в реактор смеси UF6 с водородом и кислородом или воздухом. Смесь UF6 и кислорода (или воздуха) поступает в реакционную зону по трубам, расположенным по окружности реактора. Водород подают по внешнему кольцевому каналу.

Важным условием успешной работы реактора является предотвращение преждевременного смешения компонентов пламени. В противном случае реакция может начаться вблизи от выходного сечения трубок, служащих для подачи реагентов, что неизбежно приведет к  их  закупорке  и  аварийной  остановке  реактора. С целью разделения основных компонентов пламени в межтрубное пространство подают защитный газ (азот), который, проходя по  кольцевому   зазору   вокруг   газоподводящих   трубок,   создает зону, обедненную основными компонентами пламени.

Сравнительные характеристики порошков, полученных по разным технологиям представлены в табл.1.

Таблица 1

Сравнительные характеристики порошков, полученных по разным технологиям

Параметр

АДУ-процесс

АУК-процесс

Сухая конверсия

Удельная поверхность, м2

2,5 — 6

3,6 — 6

2,1 — 3

Насыпная плотность, г/см3

1,5 — 2

2 — 2,3

0,7 — 1

Плотность утряски, г/см3

2,4 — 2,8

2,6 — 3

1,5 — 1,9

Текучесть

Нетекучие

Текучие

Текучие

Отношение O/U

2,03 — 2,17

2,06 — 2,16

2,5 — 2,12

Содержание примесей ppm

Фтор

30 — 50

30 — 70

До 100

Углерод

40 — 200

120

40

Железо

До 70

10 — 20

10 — 50

Хром

40

3

20

Никель

40

10

7

Марганец

5

1

2

Ванадий

10

10

1


 

А также другие работы, которые могут Вас заинтересовать

30576. Эстетика и творчество 36.5 KB
  Как красота в природе или в жизни будучи воспринята нами мобилизует наши духовные силы так и эстетическое начало в орнаменте музыкальной ритмике и ритмике танца – организуют естественно эстетически наш внутренний мир. Однако ритм только тогда эстетически и художественно действует на наше восприятие когда он преобразуясь в соответствующие психологические импульсы способен привести наш духовный мир в особое состояние – эстетическое настроение. Недаром художники писатели журналисты понимают эстетическое начало как тот вид...
30577. К.С. Станиславский о творчестве 24 KB
  Анализ роли через действие не может быть оценено иначе как открытие гениальное это самый главный и самый верный способ воздействия на актерское воображение стимулятор его работы. Ввел понятие перспектива роли т. Зерно роли – душевное типическое изображение героя.
30578. Розанов о тв-ве, таланте, литературе («Уединенное», «Опавшие листья») 77.5 KB
  Розанов о твве таланте литературе Уединенное Опавшие листья Василий Васильевич Розанов – целое явление в русской философии отдельное от всех не принадлежащее ни к какому течению. Розанов выработал собственный стиль а стиль это душа вещей как он писал сам. Розанов интересен еще тем что он не был устоявшимся раз и навсегда мыслителем который всю свою научную карьеру отстаивает какието свои убеждения и мысли или развивает их свои идеи он постоянно обновлял или подвергал критике. Среди работ важных для понимания...
30579. Лосев А. о творчестве 34.5 KB
  Лосев А. Лосев 23. Лосева учителя математики страстного любителя музыки скрипачавиртуоза и Н. Лосевой дочери настоятеля храма Михаила Архангела протоиерея о.
30580. Неосферные трансформации СМИ 34 KB
  Война и мир цивилизаций Лукьянов: все культуры имеют единый генетический код; есть единый культурный архетип. Война: агрессор стремится разрушить перепрограммировать массовое сознание. 3я мировая информация – психологическая война. С 3 мая 1946 речь Черчилля в Фултоне Стадии: холодная война до1988 информационнопсихологическая война с 1988 Медиа как военные средства.
30581. Творчество Юрия Роста 27.61 KB
  Творчество Юрия Роста.Юрий Михайлович РОСТ родился в 1939 году в городе Киеве.Юрий Рост очень интересный человек. Работал в Комсомолке Литературке на RENTV Конюшня Роста в Общей газете.
30582. Информационные потоки и их особенности 30.69 KB
  В его рамках объединены и производство и распространение МИП причем во всей сложности того и другого. В отличие от всех этих видов творчества ориентированных на создание определенного типа произведений жка оказывается еще и деятельностью направленной на производство МИП.Что представляет собой структура распространения МИП В ней четко определяются три взаимосвязанных обусловливающих друг друга элемента:1 тиражирование информационных продуктов;2 хранение их;3 доставка получателю.А если в качестве основания для рассмотрения взять...
30583. История журналистской профессии 20.29 KB
  Но журналистика могла развернуться лишь с появлением печатных периодических изданий возникших в Европе в XVI веке в России в XVII веке.Массовой журналистика стала после отмены крепостного права.Дореволюционная журналистика знала замечательных репортеров – профессионалов мастеров своего дела умеющих быть мобильными находчивыми остроумными и подчас смелыми людьми – писал Б.После 1917 года журналистика изменилась другими стали требования к журналисту.
30584. Журнализм в мире профессии (по Бахтину) 16.02 KB
  Он утверждал что слово является непосредственным фактом жизнедеятельности то есть слово – поступок. По сути это переход от формулы слово и дело к формуле и слово есть дело . Для журналиста это принципиально важно ведь для нас господа слово действительно дело.Бахтин изучал даже не столько само слово сколько границы звучащего слова.