19179

Рекристаллизация в процессе спекания

Лекция

Энергетика

ЛЕКЦИЯ 14 Рекристаллизация в процессе спекания В любом поликристаллическом материале при нагревании до высокой температуры возрастает средний размер кристаллитов зерен. При этом некоторые из них напротив уменьшают свои размеры или исчезают вообще. Под ростом зерен...

Русский

2013-07-11

224.5 KB

13 чел.

ЛЕКЦИЯ 14

Рекристаллизация в процессе спекания

В любом поликристаллическом материале при нагревании до высокой температуры возрастает средний размер кристаллитов (зерен). При этом некоторые из них, напротив, уменьшают свои размеры или исчезают вообще. Под ростом зерен подразумевается увеличение их среднего размера.

В процессе теплового движения атомы не только перемещаются в кристаллической решетке, но и переходят через границы зерен. В случае плоской границы зерна  эти перемещения сбалансированы, т. е. число атомов, перемещающихся в обоих направлениях, одинаково. Если граница искривлена, то атом, находящийся на вогнутой поверхности, будет иметь большее число соседей и, следовательно, меньшую энергию, чем в том случае, когда он располагается на выпуклой поверхности (рис.1).  Поэтому перемещения атомов в обоих направлениях через границу окажутся неодинаковыми; вследствие этого сама граница растущих зерен будет смещаться к центру кривизны. При этом уменьшается кривизна поверхности, т.е. увеличивается радиус зерна. Движущей силой для такого смещения является стремление к минимуму площади поверхности и энергии границы.

Рис.1. Схема межзеренной границы

Энергия системы, включающей границы зерен, зависит от кривизны их поверхности, в расчете на 1 моль можно записать:

,                                                  (1)

G  — поверхностная энергия; V — молярный объем; R1 , R2 - главные радиусы кривизны.

Для системы из двух кристаллов, разделенных искривленной границей энергетическая диаграмма приведена на рис.2.

 

Рис. 2. Энергетическая диаграмма

В рассматриваемой системе происходит обмен атомами между областями (зернами) А и В, следствием которого является перемещение границы. Очевидно, что скорость перемещения и, соответственно, скорость роста зерен определяется скоростью направленного переноса атомов через межзеренную границу, которая, в свою очередь, зависит от частоты перескоков атомов в прямом и обратном направлении:

                   ,                  (2)

где ΔG — изменение свободной энергии, С — постоянная величина.

Результирующая скорость переноса атомов описывается уравнением:

                                                     Фр=АВВА),                                               (3)

в котором λ соответствует длине элементарного скачка.

Используя уравнения (1 — 3) и разлагая экспоненту, содержащую G в ряд до второго члена, получаем:

                                 ,                                   (4)

Таким образом, рост зерен это термически активируемый процесс, скорость роста зерен экспоненциально растет с температурой, причем энергия активации процесса определяется энергией переноса атомов через границу.

Можно показать, что границы зерен равноценны в энергетическом отношении, то есть находятся в равновесии, если пересекаются под углом 120o. Легко убедиться, что углы, равные 120o, получаются лишь при росте шестигранных зерен (в двумерном изображении). Зерна с меньшим числом сторон будут иметь выпуклые границы. Зерна, имеющие больше шести сторон, ограничены вогнутыми поверхностями. Поскольку межзеренные границы мигрируют по направлению к центру своей кривизны, зерна, имеющие меньше шести сторон, будут уменьшаться, а зерна, имеющие больше шести сторон, - увеличиваться. Форма зерен, имеющих различное число сторон, а также соответствующие направления перемещения их границ показаны на рис.3.

Рис.3. Форма зерен и направление миграции границ

В общем случае можно принять, что радиус кривизны границ данного зерна прямо пропорционален его диаметру. В связи с этим движущая сила роста зерен и, соответственно, скорость роста обратно пропорциональны размеру зерна:

                                               ,                                                    (5)

После интегрирования получаем:

                                                                       ,                                                          (6)

           

где  d0 — начальный диаметр зерна.

Равенство (6) является аналитическим выражением параболического закона роста зерен и широко используется на практике. Параметр К, определяющий скорость спекания, зависит от многих факторов, главными из которых являются факторы, контролирующие массоперенос, например, коэффициент диффузии, скорость испарения и т.д.

Рис.4. Изменение конфигурации границы при наличии включения

При наличии посторонних включений рост зерен затрудняется, поскольку для их преодоления площадь границы должна увеличиться, что связано с увеличением поверхностной энергии (рис.4).

Установлено, что в этом случае предельный размер зерна описывается выражением:

                                                                                                       (7)

где  dB — размер включения;  СВ — объемная доля включений.

Последнее выражение приблизительно, однако оно демонстрирует факт, согласно которому посторонние включения оказывают тем большее сопротивление росту зерен, чем меньше их размер и чем выше их объемная доля. Влияние включений на рост зерен также необходимо учитывать на практике, так как оно всегда имеет место в процессах производства керамики, например, за счет наличия пор в исходном уплотненном порошкообразном материале.

В зависимости от линейных размеров элементов локальных систем «пора – граница зерна», результаты их взаимодействия при инициации миграции границ (росте зерен) могут быть следующими:

  •  поры остаются прикрепленными к границам зерен и препятствуют их миграции аналогично дисперсным включениям второй фазы, когда отрыв границы энергетически нецелесообразен в связи с увеличением ее протяженности. Завершению такого рода взаимодействия соответствует полное растворение поры путем поверхностной диффузии по границам зерен;
  •  поры, оставаясь прикрепленными к границам, мигрируют вместе с ними со скоростью, равной скорости движения границ и росту зерен не препятствуют;
  •  поры отделяются от границ и оказываются захваченными внутрь зерен. Это происходит, когда скорость движения границ превышает максимально возможную скорость движения пор. Оказавшись захваченными в ловушке внутри зерна, поры практически не испытывают сокращения своего объема и, соответственно, уже не оказывают влияние на усадку таблеток.

Рис.5. Диаграмма взаимодействия пор с границами зерен: 1 — теоретическая кривая

для UO2; — экспериментальные данные для UO2; 2, о — экспериментальная кривая

для случая легирования UO2  алюмосиликатной добавкой в количестве 0.005 %

Конечный результат анализа может быть представлен в виде диаграммы взаимодействия пор с границами зерен (рис.5), где два лимитирующих условия обуславливают границы области отделения границ зерен от пор. Н этом рисунке: R — радиус кривизны зерна; Mb — подвижность границы зерна; DSS — параметр поверхностной диффузии; a0 — радиус поры; — атомный объем.

Как следует из данных, представленных на  рис.5, процесс усадки таблеток UO2 заканчивается при размере зерна 1214 мкм, что соответствует расположению по границам зерен пор с минимальным критическим размером. Дальнейший изотермический отжиг образцов и связанная с ним собирательная рекристаллизация обуславливает сокращение объемного содержания пор и рост зерна.

Таким образом, близкие к постоянному числу количество и размер пор на заключительной стадии спекания и, соответственно, плотность спеченных изделий, обусловленные единой природой материала и стабильной технологией изготовления, обеспечивают традиционное и практически постоянное значение среднего размера зерна (при стабильном уровне содержания примесей). Кроме того, тормозящее влияние пор на скорость движения границ зерен приводит к тому, что зеренная структура во время спекания практически никогда не достигает полной степени рекристаллизации. Поэтому, как правило, средний размер зерна топливных таблеток из UO2 составляет 1015 мкм.

Несомненно, что ограничение содержания примесей, как в порошке, так и в самих топливных таблетках, обеспечивающее ядерную чистоту топлива, непосредственно влияет на характер взаимодействия пор с границами зерен.

Активации роста зерна может быть осуществлена путем легирования. Рассмотрим влияние нерастворимых добавок на процессы спекания и рекристаллизации. Как правило, такие добавки образуют фазовые выделения по границам зерен. Активация спекания в этом случае связана с массопереносом по механизмам «испарение — конденсация» или «растворение — осаждение».

Рассмотрим действие таких добавок на примере оксида алюминия. При температуре спекания диоксида урана Al2O3 имеет высокое давление паров. В этом случае основным механизмом, массопереноса является механизм «испарение-конденсация», что существенно меняет характер взаимодействия пор с границами зерен, как в области прикрепления, так и в области отделения пор от границ зерен.

Согласно этой модели искривление (градиент кривизны лидирующей поверхности)  движущейся границы обуславливают перераспределение вещества путем поверхностной диффузии с лидирующей на ведомую поверхность зерна (рис.6). Аналогичным образом можно описать и процесс залечивания поры при введении добавок с высокой упругостью пара.

Рис.6. Движение поры или границы зерна путем механизма «испарение-конденсация»

Для активации спекания путем введения добавок, образующих жидкую фазу, необходимо выполнить следующие условия: добавки не растворяются в диоксиде урана, диоксид урана растворим в жидкой фазе используемой добавки, жидкая фаза добавки хорошо смачивает частицы диоксида урана.  

Наиболее существенная часть процесса жидкофазного спекания заключается в растворении и последующей кристаллизации твердого вещества “растворение – осаждение”, что сопровождается максимальным уплотнением и увеличением среднего размера зерен. В соответствии с классической теорией Д.Кингери причина этого явления заключается в локализации капиллярного давления в пространстве между частицами твердой фазы, что приводит к увеличению растворимости вещества и диффузии его из контактной зоны. При этом происходит сближение центров частиц и усадка (рис.7).

Рис.7. Массоперенос с участием жидкой фазы

Капиллярное давление Р=2/r, где — межфазная энергия (поверхностного натяжения), вызывает увеличение химического потенциала в приконтактной области.

В первом приближении можно записать:

                                                                          (8)

где С — концентрация растворимого в жидкости вещества вблизи искривленной поверхности в контактной области, С0 — концентрация вблизи плоской поверхности.

Разница концентраций обеспечивает необходимый поток массы для уменьшения кривизны одной из контактирующих частиц, т.е. рост одних зерен за счет других. Легкоплавкая прослойка обеспечивает легкий путь диффузии ионов через границы.


 

А также другие работы, которые могут Вас заинтересовать

39813. Анализ качества АСР 433.5 KB
  Анализ качества АСР. Системы построенные только по условиям физической реализации как правило не удовлетворяют показателям качества а реализация переходного процесса близко к идеальному связано с большими энергозатратами. Наиболее тяжёлым для АСР является единичный сигнал поэтому если АСР удовлетворяет заданным показателям качества при ступенчатом воздействии то она будет вести себя не хуже при остальных воздействиях. Методы оценки качества переходного процесса АСР.
39814. Автоматические системы прямого и непрямого регулирования 193.5 KB
  При нарушении установившегося режима вследствие уменьшения нагрузки двигателя произойдет увеличение частоты вращения приводного вала 4 и центробежной силы грузов 5. Регуляторы частоты вращения непрямого действия. При изменении частоты вращения муфта ЧЭ будет перемещать управляющий золотник который откроет доступ масла высокого давления в одну из полостей сервомотора. будет восстанавливаться заданная частота вращения.
39815. Двухпозиционное регулирование 51.5 KB
  Если объект представляется интегрирующим звеном с запаздыванием то диапазон колебаний регулируемой величины будет больше ширины петли гистерезиса 2а так как регулятор будет реагировать на фактическое изменение регулируемой величины с запаздыванием об. Дополнительное приращение амплитуды автоколебаний на счет запаздывания составит .4: Очевидно как и в случае интегрирующего объекта наличие запаздывания в апериодическом объекте приведет к увеличению диапазона колебаний регулируемой величины. Амплитуда колебаний будет тем больше чем больше...
39816. Нелинейные системы 71.5 KB
  Существует 2 группы НС: системы которые разрабатывались как линейные но изза несовершенства изготовления некоторых элементов или в процессе эксплуатации за счет износа элементы носят существенно нелинейный характер например появление нечувствительности. Идеальное поляризованное реле с зоной нечувствительности: [аа] зона нечувствительности Идеальное реле Нечувствительность [аа] зона нечувствительности Ограничение насыщение Ограничениенечувствительность Нессиметрия Реле идеальное поляризованное с петлей...
39817. Импульсные и цифровые автоматические системы управления 51.5 KB
  К импульсным АСУ относятся системы в состав которых входит хотя бы один элемент дискретного действия преобразующий непрерывный сигнал в последовательность импульсов или в ряд квантованных сигналов. Функциональную схему импульсной системы можно представить состоящей из дискретного элемента и непрерывной части НЧ. непрерывные системы дискретные системы xt непрерывная величина x k величина определена в отдельные промежутки времени производная от непрерывной величины  x k=x kx k1 разность первого порядка вторая...
39818. Развитие автоматизации судов 194.5 KB
  характеризуется внедрением автоматических систем управления регулирования контроля и защиты в объёме. На следующем этапе разрабатываются автоматические системы регулирования и дистанционного управления функционально связанными установками: котельной паротурбинной дизельэнергетической электроэнергетической. Автоматика первого поколения позволила решить главные задачи: повысить маневренность стабильность работы и экономичность судовых машин и систем освободить людей от утомительной обязанности ручной регулировки и управления. Резко...
39819. Классификация систем автоматического регулирования 381.5 KB
  Системы автоматического регулирования нашли широкое применение в многочисленных технологических процессах различных отраслей народного хозяйства. Следящие системы когда изменение выходного параметра Yt происходит по заранее неизвестному закону изменения задающего воздействия Xt. Во время работы системы регулируемая величина Yt должна изменяться в полном соответствии с задающим воздействием т. К таким системам относятся системы автоматического сопровождения цели например телескоп следит за движением небесного тела системы...
39820. Анализ автоматических систем регулирования 362 KB
  Теория автоматического управления делится на: анализ АСР известны параметры блоков их характеристики при этом необходимо определить поведение системы качество регулирования. синтез АСР заключается в нахождении параметров блоков АСР регулятора при заданных показателях качества. АСР могут находиться в двух режимах: Статический все воздействия внутренние и внешние постоянны во времени реальные АСР практически редко находятся в статическом режиме. Для упрощения расчётов АСР проводят линеаризацию ведь как правило поведение...
39821. Разработка проекта комплексного дизайн-графического обеспечения рекламной кампании Уфимского филиала МГГУ им. М.А. Шолохова в области образовательных услуг 67.17 KB
  Краткая история графического дизайна. Теоретическая значимость: в теоретической части дан подробный анализ истории зарождения графического дизайна и история возникновения наружного штендера. В первой главе представлен краткий обзор истории графического дизайна. Краткая история графического дизайна Графический дизайн художественнопроектная деятельность по созданию гармоничной и эффективной визуальнокоммуникативной среды.