19200

Параметры ионных источников. Конструктивные элементы ионных источников. Дуоплазматрон и ионный источник Пеннинга

Лекция

Производство и промышленные технологии

Лекция 12 Параметры ионных источников. Конструктивные элементы ионных источников. Дуоплазматрон и ионный источник Пеннинга. Ионный источник – устройство для получения в вакууме ионного пучка – пространственно сформированного потока ионов скорость направленного дви...

Русский

2013-07-11

113.5 KB

74 чел.

Лекция 12

Параметры ионных источников. Конструктивные элементы ионных источников. Дуоплазматрон и ионный источник Пеннинга.

Ионный источник – устройство для получения в вакууме ионного пучка – пространственно сформированного потока ионов, скорость направленного движения которых много больше их тепловых скоростей.

Ионный источник состоит из собственно источника ионов и устройства их экстракции. Атомы ускоряемых элементов могут вводиться в ионный источник либо напуском (в виде газа), либо испарением (жидкой или твердой примеси). В ионном источнике они ионизируются и вытягиваются соответствующим потенциалом, приобретая нужную энергию.

К источнику ионов предъявляют следующие требования:

  •  стабильность пучка во времени;
  •  получение нужных ионов с определенным зарядом;
  •  получение нужной плотности ионного тока.

Важнейшие параметры ионного источника:

  •  полный ток и плотность тока ионного пучка;
  •  энергия ионов;
  •  характерный поперечный размер пучка;
  •  качество пучка, его пространственная и скоростная сформированность – эффективный угол расходимости и энергетический разброс ионов;
  •  компонентный состав пучка – положительные и отрицательные ионы, атомарные, молекулярные, многозарядные ионы;
  •  газовая эффективность – отношение потока сформированных ионов к потоку газа, подаваемого в ионный источник;
  •  энергетическая эффективность ионного источника – отношение мощности пучка к мощности потребляемой ионным источником от сети.

Существуют различные типы источников ионов: с горячим, холодным и полым катодами; дуоплазмотроны; источники с ВЧ- и СВЧ - возбуждением; с поверхностной ионизацией.

В ионном источнике обеспечивается возбуждение атомов рабочего газа до энергии, превышающей потенциал ионизации атома, для образования положительно заряженных ионов.

Обычно ионные источники включают следующие конструктивные элементы: разрядную или ионизационную камеру, которая является несущей конструкцией источника; анод, предназначенный для создания электрического поля внутри разрядной камеры; источник электронов (термокатод), инжектирующий электроны для ионизации газа; магнитную систему, повышающую эффективность ионизации и плотность плазмы; электроды, экстрагирующие ионы, и электроды первичной фокусировки пучка.

Работу источника ионов обеспечивают вспомогательные устройства: система подачи газа; устройство испарения вещества; источники питания.

Любой ионный источник состоит из двух основных узлов:

  •  эмиттера ионов,
  •  электростатической системы, с помощью которой ионы извлекаются, ускоряются и формируются в направленный поток – ионно-оптическая система (ИОС).

В простейшем виде ионный источник состоит из эмиттера и ускоряющего электрода – экстрактора с отверстием для выхода ионного пучка. Для дополнительной фокусировки ускоренного пучка используются электростатические и магнитные линзы. ИОС различных ионных источников строятся по единому принципу, и главным фактором, определяющим тип ионный источник, является метод создания эмиттера ионов.

В зависимости от физической природы эмиттера ионов различают несколько типов ионных источников:

  •  с поверхностной ионизацией, где эмиттером ионов служит поверхность накалённого материала, работа выхода которого превышает потенциал ионизации падающих на него атомов;
  •  плазменные, в которых ионы отбираются с поверхности плазмы, образуемой в большинстве случаев с помощью газового разряда;
  •  "полевые", в которых ионы образуются благодаря действию сильного электрического поля (~108 В/см) на и вблизи поверхности твёрдого тела, ионы которого необходимо получить.

В установках для элементного и структурного анализа, использующих ионные пучки, применяются исключительно плазменные ионные источники.

Наиболее широко используемым плазменным ионным источником является дуоплазмотрон, принципиальная схема которого приведена на рис. 12.1, на котором 1 – катод из вольфрама или гексаборида лантана; 2 – промежуточный анод; 4 – анод; 3 – соленоид, создающий магнитное поле ~ кГс; 5 – вытягивающий электрод ионно-оптической системы. Анод и промежуточный анод изготовлены из ферромагнитного материала и образуют магнитную цепь.

Как видно из рисунка, в дуоплазмотроне для увеличения степени ионизации столб разряда подвергается механическому и магнитному, сжатию с помощью диафрагм и магнитного поля, нарастающего к анодному отверстию малого диаметра. Сжатие разрядной дуги в узком канале промежуточного электрода 2 сопровождается возникновением плазменного "пузыря" со скачком потенциала в слое, отделяющем катодную плазму А от более плотной анодной плазмы С. В тонком слое В ускоряются и фокусируются электроны, выходящие из плазменной области А в плазменную область В. Вблизи анода 4 плотная плазма дополнительно сжимается сильным неоднородным магнитным полем, сечение плазмы вблизи выходного отверстия уменьшается, а концентрация ионов в плазме возрастает до 1014–1015 см -3. Такая плазма эмитирует ионы с плотностью в десятки А/см2, т. е. образуется "точечный" эмиттер.

Давление рабочего газа в промежуточном аноде составляет ~ 10-2 Тор.

Дуоплазматрон позволяет получать ионы газообразных элементов с высокой плотностью ионного тока. Рабочий газ, ионы элементов которого необходимо получить, поступает в область промежуточного электрода через регулируемый натекатель. Среди других ионных источников дуоплазматрон отличается высокой газовой эффективностью.

Дуоплазматрон требует достаточно сложного электропитания, которое включает:

  •  питание накала катода (в случае W катода U = 5-10 В, I = 10-40 А);
  •  питание промежуточного анода U = 0-100 В, I = 0-0,5 А;
  •  питание анода U = 0-250 В, I = 0,5-2 А;
  •  питание соленоида U = 0-10 В, I = 0-50 А.

Причем, все эти источники питания находятся под высоким положительным ускоряющим потенциалом, определяющим энергию ионов, вытягиваемых из ионного источника.

При включении дуоплазматрона газовый разряд вначале загорается между катодом и промежуточным анодом. Затем, по мере повышения напряжения на аноде разряд втягивается в область между промежуточным анодом и анодом с образованием плазменного "пузыря" с высокой плотностью ионов.

Первый электрод ионно-оптической системы в простейшем случае является единственным и находится под потенциалом земли. В многоэлектродных ИОС на первый электрод подается отрицательный потенциал ~ кВ.

Необходимо отметить, что из дуоплазматрона, как и из любого плазменного источника вытягиваются ионы не только рабочего газа, но и ионы остаточных газов, находящихся в ионном источнике.

Второй тип ионного источника, также широко используемый в различных методиках анализа – ионный источник с холодным катодом или ионный источник Пеннинга.

В данном ионном источнике зажигание газового разряда осуществляется за счет пробоя газового промежутка катод-анод, между которыми прикладывается напряжение несколько сотен вольт. Напряжение на разрядном промежутке должно быть минимальным для зажигания и поддержания стабильного газового разряда. Напряжение зажигания зависит от материла катода. Для большинства материалов оно составляет несколько кВ. Однако, для некоторых "низковольтных" материалов", таких как алюминий, магний, оно составляет сотни вольт. У этих материалов тонкая окисная пленка на поверхности понижает напряжение зажигания за счет того, что окисная пленка является диэлектриком, а у диэлектриков большой коэффициент ионно-электронной эмиссии.

Газовый разряд горит в продольном магнитном поле, создаваемом, как правило, постоянным магнитом с индукцией несколько кГс, между двумя катодами и кольцевым анодом. Катоды источника изготавливаются из алюминия, корпус – из мягкого железа для замыкания магнитных линий. Эмиссия электронов из катодов происходит за счет их бомбардировки ионами разряда. За счет приложенного магнитного поля электроны движутся по спирали, что увеличивает их путь и число ионизирующих соударений на пути катод-анод.

Давление рабочего газа в ионном источнике 10-3-10-4 Тор.

Извлекаемый ионный ток в стационарном режиме до нескольких миллиампер.

Основные достоинства ионного источника Пеннинга:

  •  простота электропитания, под высоким потенциалом, который прикладывается к корпусу источника, находится только один регулируемый выпрямитель питания анода,
  •  отсутствие накаливаемого катода, что позволяет длительно эксплуатировать источник без вскрытия на атмосферу.
  •  низкое рабочее давление в ионном источнике.

Недостатком является малый вытягиваемы ионный ток. Однако, в случаях, когда не требуются его большие значения, простота источника Пеннинга является решающим обстоятельством.

Необходимо отметить следующее обстоятельство. Несмотря на то, что вышеописанные ионные источника являются газовыми источниками, т.е. рабочим телом в них являются газообразные вещества, с их помощью можно получать ионы элементов, не являющихся газообразными. Это общее свойство плазменных источников ионов.

Например, если в качестве рабочего газа использовать метан (СН4), то наряду с ионами водорода как атомарными (Н+), так и молекулярными (Н2+) из источника будут вытягиваться также ионы углерода (С+). Происходить это будет благодаря диссоциации метана на водород и углерод в плазме разряда.

Рис.12.1

C

B

A

1

2

4

5

3


 

А также другие работы, которые могут Вас заинтересовать

64515. Становление и развитие социальной психологии 30.5 KB
  Индивидуальные особенности человека и его социальное поведение и положение у Платона связано с тремя частями тела: головой умом развит у философов сердце мужество у воинов и живот телесные вожделения у ремесленников.
64516. Основные идеи милетской школы (Фалес, Анаксимандр, Анаксимен) и Гераклита 38 KB
  Первые в истории мысли научно-теоретического построения. Предсказал полное солнечное затмение в 585 г. до н.э, удачный урожай оливок. Первый понял, что затмение происходит из-за луны. Нилу мешают течь пассаты, дующие с моря.
64517. ПЕРИОДЫ ДЕТСКОГО ВОЗРАСТА. ПЕДИАТРИЯ 85.5 KB
  Это медицина периода роста формирования и развития человеческого организма который является наиболее ответственным в жизни человека. какие будут конечные результаты детства с какой степенью здоровья физических интеллектуальных возможностей...
64518. ОБМЕН ВЕЩЕСТВ И ЭНЕРГИИ 32.53 KB
  Рост и обновление клеток организма возможны только случае непрерывного поступления в организм кислорода и питательных веществ. Для непрерывного обновления организма для совершения человеком работы нужна энергия.
64520. ОБМЕН ВЕЩЕСТВ И ЭНЕРГИИ В КЛЕТКЕ 253.64 KB
  Энергетический обмен диссимиляция катаболизм совокупность реакций расщепления органических соединений сопровождающихся выделением энергии. Питание процесс потребления энергии и веществ.
64521. Основные этапы становления дипломатических школ 32.5 KB
  В Средневековье не мог существовать институт светского суверенитета дипломатия не имела в своем распоряжении постоянного дипломатического представительства послы в этой системе направлялись к другому правителю по конкретному случаю. Начался бурный расцвет светского права.
64522. Предмет и основные понятия информатики 15.4 KB
  Информатика это комплексная техническая наука которая систематизирует приемы создания сохранения воспроизведения обработки и передачи данных средствами вычислительной техники а также принципы функционирования этих средств и методы управления ними.