19208

Аналогия световой и электронной оптики. Электронная оптика параксиальных пучков

Лекция

Физика

Лекция № 4. Аналогия световой и электронной оптики. Электронная оптика параксиальных пучков. Движение заряженных частиц в аксиальносимметричном электрическом поле. Основные типы электростатических линз. IV. Электронная оптика. 4.1. Аналогия световой и электрон

Русский

2013-07-11

735 KB

17 чел.

Лекция № 4.

Аналогия световой и электронной оптики. Электронная оптика параксиальных пучков. Движение заряженных частиц в аксиально-симметричном электрическом поле. Основные типы электростатических линз.

IV. Электронная оптика.

§ 4.1. Аналогия световой и электронной оптики.

До сих пор мы изучали движение отдельных частиц в электронном и магнитном полях. Электронная оптика изучает законы распространения пучков заряженных частиц – электронов и ионов – в электрическом и магнитном полях. Пучки в электронной оптике, как правило, считаются достаточно редкими, так что электрические и магнитные микрополя от собственного объемного заряда пучка пренебрежимо малы по сравнению с макрополями отклоняющей системы (линейная оптика). Уже первые эксперименты в конце 19 века с катодными лучами показали, что законы распространения электронных лучей подобны законам распространения световых лучей в геометрической оптике. И дело вовсе не в том, что электроны можно считать электронной волной. Комптоновские длины волн электрона  много меньше характерных размеров оптических систем, т.е. электроны можно считать частицей. Аналогия между движением заряженной частицы и распространением света более фундаментальна, и лежит она в существовании вариационного принципа.  В геометрической световой оптике этот принцип имеет название принципа Ферма: , т.е.  где - оптическая длина пути света,  - показатель преломления. Оптическая длина реального пути света должна быть минимальна (свет распространяется по такому пути, на котором он тратит наименьшее время). Свет распространяется прямолинейно. В механике вариационный принцип имеет вид: , где , - векторный потенциал (), L- функция Лагранжа. Вариация интеграла равна изменению этого интеграла при изменении обобщенный координат: .

То, что вариация равна 0, говорит о том, что этот интеграл на действительной траектории имеет экстремум (рис.4.1). Если , то функция Лагранжа , где T- кинетическая энергия, а - потенциальная энергия. Величина  называется действием, а вариационный принцип называется принципом наименьшего действия: .

Принцип наименьшего действия можно записать через обобщенный импульс, который

равен (где): , при  . Покажем, что принцип Ферма эквивалентен закону преломления геометрической оптики (рис.4.2). Оптическая длина,  ее вариация:

, откуда следует закон преломления геометрической оптики:
.

Получим аналогичный закон для электронной оптики.

Так как параллельная границе раздела компонента скорости не меняется (рис.4.3), то . Следовательно,  или (где - ускоряющее напряжение) – закон преломления электронной оптики. Таким образом, - аналог показателя преломления.

Но у электронной оптики есть и существенные отличия от световой, они в основном состоят в следующем:

  1.  Отдельные лучи в световой оптике независимы – электронные лучи взаимодействуют друг с другом.
  2.  Показатель преломления для электронов всегда непрерывен, для света он, как правило, меняется скачком.
  3.  Диапазон изменения показателя преломления для электронов не ограничен, в оптике n  2.5.
  4.  Скорость электронов тем больше, чем больше показатель преломления, а скорость света наоборот.
  5.  Преломляющие поверхности для электронов, в отличие от световых лучей, не могут быть произвольными – распределение потенциалов всегда удовлетворяет уравнению Лапласа (линейная электронная оптика) или Пуассона (нелинейная электронная оптика).

§ 4.2. Потенциал аксиально-симметричного электростатического поля.

Задание преломляющих поверхностей в виде сеток затруднительно, поэтому часто используют диафрагмы с аксиально-симметричным распределением потенциала  (рис.4.4).

Так как =, то в результате разложения  по  будут только четные степени:

.

Потенциал удовлетворяет уравнению Лапласа:

С учетом

;      ; ;                   уравнение Лапласа перепишется в виде:

Приравнивая к нулю коэффициенты при различных степенях r, получим систему:

.

С учетом (потенциал на оси), получим распределение потенциала в пространстве в виде:

.

Таким образом, распределение потенциала аксиально-симметричного поля определяется значением потенциала на оси .

§ 4.3. Движение параксиальных пучков электронов в аксиально-симметричном электростатическом поле.

Для приосевых электронов (r2/L2хар<< r/Lхар, где Lхар – характерная длина системы), которые еще называют параксиальными, можно получить уравнение траектории. Так как , то электроны не вращаются вокруг оси z. Другие компоненты электрического поля определяются из соотношений:

;

.

Уравнение движения для электрона:

                                                                                (4.1)

Первое уравнение системы замечательно тем, что в полях с аксиальной симметрией радиальная фокусирующая или расфокусирующая сила пропорциональна удалению частицы от оси. Возьмем второе уравнение системы (4.1). Учитывая, что левые части уравнения содержат производные по времени, а правые производные по z, можно использовать переход к производной по переменной z: .

Интегрируя последнее уравнение с учетом граничного условия при z = 0 U(z) = 0 и dz/dt0 = 0 (пренебрегаем начальной скоростью частиц), получим dz/dt = .

Возьмем первое уравнение системы (4.1) и перейдем к производной по переменной z: . Последнее уравнение перепишем в виде: , получим уравнение траектории r(z) параксиального пучка:          

                                                     (4.2),

которое называется основным уравнением электронной оптики.

Анализ уравнения (4.2):

  1.  В уравнение входит только , траектория зависит только значением потенциала на оси.
  2.  В уравнение не входит , поэтому траектории электронов и ионов не отличаются.
  3.  Уравнение линейно и однородно относительно можно заменить на ;
  4.  Уравнение линейно и однородно относительно  можно заменить на ;

Таким образом, полученное линейное однородное дифференциальное уравнение 2-го порядка относительно U(z) и r(z) показывает, что  возможно масштабное моделирование, т. е. если потенциал во всех точках пространства увеличить в k раз (увеличить потенциал на всех электродах системы в одинаковое число раз), то уравнение, а следовательно и траектория электрона не изменится. Кроме того, можно сделать вывод, что любое аксиально-симметричное поле есть линза, т.к. в любой плоскости сохраняется подобие траекторий относительно расстояния от оси (рис.4.5): .

Фокусная сила линзы: возрастает с удалением от оси.

Линза будет фокусирующей (собирающей), если .  Линза будет расфокусирующей (рассеивающей), если .

§ 4.4. Параметры увеличения в электронной линзе.

Основное уравнение электронной оптики (4.2) является однородным дифференциальным уравнением относительно r второго порядка. Решение, как известно, можно представить

в виде суммы двух частных решений:

, где  и - произвольные константы. Пусть ,  частные решения при  и . Тогда  - это совокупность траекторий, которые пересекают ось  в точках А и В, т.е. в точке В соберутся все электроны, вышедшие из точки А (рис.4.6). При и  для всех электронов, т.е. если источник поместить в точку А, то в точке В будет его изображение (рис.4.7). Тогда линейное увеличение линзы: . Рассмотрим снова траекторию с источником на оси, т.е.  (рис.4.8). Угловое увеличение линзы определяется как отношение тангенсов углов наклона траектории к оси: . Возьмем основное уравнение электронной оптики в виде: . Для частного решения :.

Для частного решения :. Первое умножим на r2, второе на r1 и вычтем их: . Следовательно,
, то есть,. Для  и , т.е.

или . Получаем соотношение , которое является аналогом теоремы Лагранжа-Гельмгольца: .

Найдем фокусные расстояния электронной линзы. Возьмем частные решения и ,

проходящие через фокусы. Так же, как это было сделано выше, напишем для них основные уравнения электронной оптики, до множим на  и и вычтем, получим:

. Для предметного пространства: .

Для пространства изображения:

. Тогда фокусные

расстояния слева  f1 и справа f2 от главных плоскостей h1 и h2 электронной линзы можно определить через траектории, проходящие через фокус линзы r1 и параллельно оси r2 системы; . Отношение фокусных расстояний .

§ 4.5. Тонкие электростатические линзы.

Рассмотрим тонкие линзы, главные плоскости которых находятся при z = a и при z = b. Для тонких линз расстояние между главными плоскостями много меньше фокусных расстояний (b - a) << f1, f2 , т. е. главные плоскости сливаются. Линейное увеличение линзы (рис.4.10) , следовательно . Записав систему:

, получим: , т.е., следовательно . Получим:  - основное соотношение тонкой линзы.

Возьмем основное уравнение электронной оптики в виде:,

Которое можно привести к виду: ;

Проинтегрируем:

. Если линза слабая, то .

Тогда заменяя  и , и вынося  из под знака интеграла как множитель , получим:  (сократили на ). С учетом основного соотношения тонкой линзы , получим фокусные расстояния слева и справа: и .

Отношение фокусных расстояний:. Возьмем выражение для :

. Проинтегрируем по частям (), получим:

   - оптическая сила.

Если  (т.е. на границе нет электрического поля), то линза всегда собирающая ().

§ 4.6. Основные типы электростатических линз.

  

Для одиночной диафрагмы с круглым отверстием: . где Ez1 и Ez2 – напряженности электрических полей слева и справа от диафрагмы, Ud – потенциал диафрагмы. Для системы из двух линз – диафрагм с фокусами  f1 и  f2 и расстоянием между линзами l оптическая сила задается соотношением:   . В общем случае аксиально-симметричного поля траектория электрона описывается уравнениями:

, т.е. фокусирующая сила определяется знаком второй производной от потенциала на оси системы. Если U(z) > 0, то система фокусирующая, если U(z) < 0, то расфокусирующая. На рис. 4.12- 4.15 показаны примеры возможныех типов электростатических линз.


Виртуальная траектория

Реальная траектория

+

+

+

+

-

-

-

-

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

Предметная плоскость

Плоскость изображения

Рис. 4.9. Геометрические параметры линзы.

Рис. 4.8. Угловое увеличение  в линзе.

Рис. 4.7. Траектории не осевых электронов  в линзе.

Рис. 4.6. Траектории осевых электронов  в линзе.

a

b

A

B

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

z

A

B

a

b

EMBED Equation.3  

EMBED Equation.3  

z

r

EMBED Equation.3  

EMBED Equation.3  

z

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

b

a

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

a

b

A

B

z

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

0

0

0

z

z

z

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

a

b

+

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

0

0

0

z

z

z

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

a

b

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

0

0

0

z

z

z

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

a

b

-

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

0

0

0

z

z

z

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

a

b

-

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

0

0

0

z

z

z

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

a

b

+

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

Рис. 4.1. Виртуальная и реальная траектории частиц.

Рис. 4.3. Преломление пучка заряженных частиц на границе потенциалов

Рис. 4.2. Преломление света на границе двух сред

Рис. 4.4. Аксиально-симметричное поле диафрагм

Рис. 4.5. Изображение в линзе.

Рис. 4.10. Геометрические параметры тонкой оптической линзы.

Рис. 4.11. Геометрические параметры тонкой электростатической  линзы.

Рис. 4.12. Фокусирующая  электростатическая  линза с тормозящим электрическим полем.

Рис. 4.13. Фокусирующая  электростатическая  линза с тормозящим и ускоряющем электрическим полем.

Рис. 4.14. Расфокусирующая  электростатическая  линза с тормозящим электрическим полем.

Рис. 4.15. Расфокусирующая    электростатическая  линза с ускоряющем электрическим полем.

Рис. 4.16. Фокусирующая  электростатическая  линза с ускоряющем электрическим полем.


 

А также другие работы, которые могут Вас заинтересовать

28578. Сертификаты открытых ключей. Аннулирование сертификатов 20.88 KB
  Сертификаты открытых ключей. Механизмы контроля использования ключей. Подтверждение подлинности ключей Сертификат открытого ключа сертификат ЭЦП сертификат ключа подписи сертификат ключа проверки электронной подписи согласно ст. Предположим что Алиса желая получать зашифрованные сообщения генерирует пару ключей один из которых открытый она публикует какимлибо образом.
28579. Требования к качеству ключевой информации и источники ключей 16.09 KB
  Не все ключи и таблицы замен обеспечивают максимальную стойкость шифра. Исчерпывающий ответ на вопрос о критериях качества ключей и таблиц замен ГОСТа если и можно получить то только у разработчиков алгоритма. Очевидно что нулевой ключ и тривиальная таблица замен по которой любое значение заменяется но него самого являются слабыми. Таблица замен является долговременным ключевым элементом т.
28580. Криптоанализ 12.62 KB
  В частности полнораундовый алгоритм ГОСТ 2814789 может быть вскрыт с помощью дифференциального криптоанализа на связанных ключах но только в случае использования слабых таблиц замен. 24раундовый вариант алгоритма в котором отсутствуют первые 8 раундов вскрывается аналогичным образом при любых таблицах замен однако сильные таблицы замен делают такую атаку абсолютно непрактичной. [править] Критика ГОСТа Основные проблемы ГОСТа связаны с неполнотой стандарта в части генерации ключей и таблиц замен. Тривиально доказывается что у ГОСТа...
28581. Проблемы генерации и распространения ключей. Конфигурации сетей связи 14.3 KB
  Можно выделить несколько этапов жизни ключевой информации: n Изготовление n Доставка потребителям n Утилизация n Уничтожение Мы рассматривали в основном утилизацию ключей то есть их использование в алгоритмах шифрования. Рассмотрим теперь процедуры изготовления и доставки ключей абонентам они называются генерацией и распространением соответственно. Правила генерации распространения утилизации и уничтожения ключей называются ключевой системой.
28582. Требования к системе с симметричными ключами – при генерации и распространении ключей 16 KB
  Правила генерации распространения утилизации и уничтожения ключей называются ключевой системой. Процедура генерации ключей должна производить только ключи специфицированные для данного алгоритма 2. Процедура генерации должна быть максимально приближена к модели случайного равновероятного выбора ключа из множества всех ключей специфицированных для данного алгоритма.
28583. Генерация случайных чисел., использование типовых узлов в качестве ДСПЧ 33.58 KB
  Хорошие датчики имеют весьма качественные характеристики и могут использоваться непосредственно для получения ключей однако они сложны и имеют высокую стоимость и поэтому не находят массового применения. Их стоимость существенно ниже они более надежны но использовать выход с них в качестве ключа в чистом виде не рекомендуется частично о том почему их можно использовать мы поговорим в когда будем говорить о системах с открытым ключом. В качестве ДСПЧ можно использовать один из следующих узлов. Использовать его можно несколькими...
28584. Генерация случайных чисел с использованием аппаратных ДСЧ 12.16 KB
  Практически интересным является вопрос о создании аппаратных ДСЧ генерирующих 01 последовательность как можно более близкую к последовательности получаемой по равновероятной биномиальной схеме. Проблема с использованием аппаратных ДСЧ заключается в необходимости наличия дополнительного изделия а это зачастую может быть трудно реализуемо. В тех случаях когда криптографические преобразования реализуются аппаратно эта проблема разрешима сегодня аппаратные ДСЧ реализованы в изделиях серии ГРИМ и КРИПТОН при этом правда ДСЧ последнего не...
28585. Классификация имущества предприятия по видам 34 KB
  К ним относятся основные средства капитальные и другие финансовые вложения нематериальные активы. Основные средства – это часть средств производства целиком и полностью участвующие в хозяйственной деятельности предприятий в течение длительного времени не меняющие своей натуральной формы и переносящие свою стоимость на продукт постепенно по мере износа. Практически к основным средствам относя средства со сроком полезного использования больше 12 месяцев. Оборотные средства активы – вложения финансовых ресурсов в объекты...
28586. Классификация системы внутреннего контроля 28 KB
  Также различают внутренний контроль в зависимости от применяемых методов и приемов контроля общие методы контроля индукция дедукция анализ синтез обобщение и другие самостоятельно разработанные методы замеры взвешивание пересчет инвентаризация наблюдение экспертиза сверка обратная калькуляция логическая и экономическая проверка тестирование анкетирование опрос и т. Одна из наиболее развитых форм внутреннего контроля внутренний аудит. Организация внутреннего контроля в форме внутреннего аудита присуща крупным и некоторым...