19220

ИОНИЗАЦИЯ И ВОЗБУЖДЕНИЕ ЧАСТИЦ В ГАЗЕ

Лекция

Физика

ИОНИЗАЦИЯ И ВОЗБУЖДЕНИЕ ЧАСТИЦ В ГАЗЕ Плазму как среду состоящую из заряженных частиц характеризует степень ионизации или соотношение между количеством заряженных и нейтральных частиц: концентрация электронов конц...

Русский

2013-07-11

163 KB

13 чел.

ИОНИЗАЦИЯ И ВОЗБУЖДЕНИЕ ЧАСТИЦ В ГАЗЕ

  Плазму, как среду, состоящую из заряженных частиц, характеризует степень ионизации  или соотношение между количеством заряженных и нейтральных частиц:

                        

       - концентрация электронов, - концентрация атомов

В случае низкотемпературной плазмы, когда температура составляет Тe0,1-1 эВ, степень ионизации невелика 0,01-0,1. Это присуще ряду газовых разрядов: тлеющему, дуговому, искровому и т.д. С другой стороны, высокотемпературная водородная плазма при температуре Тe=1-10 кэВ практически полностью ионизована и  ~1. Такая ситуация реализуется на установках по получению управляемого термоядерного синтеза: токамаках, магнитных ловушках, пинчах и т.д.

       Ввиду изначального присутствия заряженных частиц весьма важными при рассмотрении плазмы являются процессы, связанные с ионизацией нейтральных частиц и их возбуждением. Приведем классификацию процессов, свойственных низкотемпературной плазме:

1) Упругие процессы, которые происходят при столкновении заряженных и нейтральных частиц. При каждом упругом столкновении частица теряет часть своей энергии. Для столкновения электрона и молекулы – это приблизительно 10-4 часть исходной энергии электрона. Ввиду этого, чтобы отдать значительную часть своей энергии, электрон должен совершить около 104 столкновений.

2) Неупругие процессы, приводящие к возбуждению и ионизации нейтральных частиц при их взаимодействии с заряженными частицами и фотонами. Наиболее важным видом ионизации является процесс, связанный с электронным ударом. Тем не менее, определенный вклад в ионизацию вносят процессы ионизации ионами и нейтральными частицами. Для ряда газовых разрядов имеют значение фотоионизация квантами ультрафиолетового диапазона, а также термоионизация, учитывающая суммарный эффект увеличения температуры газа. При возбуждении электронами нейтральных частиц наиболее важными являются процессы, приводящие к возбуждению электронных (метастабильных) состояний и молекулярных колебаний, и процесс диссоциации молекул.

3) Образование отрицательных ионов (прилипание), свойственное низкотемпературной плазме, т.к. энергия связи электрона с атомом (молекулой) при этом достаточно мала (Е=0,1-3 эВ) и при повышении температуры газовой среды отрицательные ионы разрушаются.         

       При рассмотрении упругих столкновений частиц важной характеристикой является сечение процесса  , которое в случае идеального газа имеет порядок  10-16 см2. Упругое столкновение электрона с атомами и молекулами представляет собой взаимодействие электрона со сложным силовым полем нейтральной частицы. Сечение данного процесса  зависит от энергии электрона, и, как правило, находится экспериментально. Для учета рассеяния электрона на различные углы вводится так называемое транспортное сечение:

                    

Где   - средний косинус угла рассеяния. Эффективная частота столкновений и длина пробега при этом выражаются соответственно:

                    

                                                                                  

  В низкотемпературной плазме отдельные взаимодействия описываются потенциалом, имеющим следующий вид:

              

В данной формуле - постоянный коэффициент, а знак плюс или минус выбирается в зависимости от отталкивания или притяжения соответственно. Показатель степени n=1 полагается при кулоновском взаимодействии, n=4 описывает случай индуцированного взаимодействия электронов или ионов с поляризованной молекулой, обладающей дипольным моментом, и для взаимодействия поляризованных молекул иногда используют потенциал с n=9-15.                     

       Рассмотрим основные результаты, связанные с выводом формулы Резерфорда, необходимой для получения кулоновского сечения заряженных частиц. Формула для числа частиц, рассеянных в 1 с в телесный угол  на рассеивающем центре (1) с зарядом  +Ze (рис.1) имеет вид:

                         

В данной формуле n - концентрация рассеиваемых частиц (2), v - их скорость, () -кулоновское сечение. Заряд каждой частицы  +ze.

                                                    Рис.1

                                                                                                     

      Взаимодействие налетающей частицы (2) и рассевающего центра (1) рассматривается в системе центра масс (Ц -системе) и описывается потенциалом:

                                 

      Для угла рассеивания    записываются следующие выражения:

                                                           

Где М -приведенная масса, v0 –скорость налетающей частицы в Ц -системе.

       Дифференциальное сечение кулоновского взаимодействия выражается как:

                      

       Окончательный вариант формулы Резерфорда для сечения имеет вид:

                      

               

  Одной из первых формул для ионизации атома электронным ударом явилась формула Томсона (1912 г.). Ее вывод был основан на представлениях классической механики и электродинамики. Ионизация атома представляется в виде формулы:

              e- + A  2e- + A+

Томсон исходил из представления, что столкновение электрона происходит с валентным электроном атома, которому в результате столкновения передается энергия E>I (I – энергия ионизации). В момент столкновения связью валентного электрона и атома можно пренебречь. Это существенно упрощает вывод. Рассмотрим столкновение электрона и атома в Ц–системе. В силу слабой связи валентного электрона и атома рассматривается взаимодействие рассеиваемого электрона и иона. Для энергии, переданной атому электроном в зависимости от угла рассеивания  , записывается следующая формула:

                          

На рис.2 представлены скорости электрона  до и после взаимодействия, и -скорость атома.

                                                                                     Рис.2

Согласно формуле Резерфорда кулоновское сечение для атома водорода имеет вид:

          

После интегрирования выражения от энергии ионизации I до энергии налетающего электрона  получается следующее выражение:

          

Для сечения ионизации атома водорода электронным ударом формула Томсона имеет вид:

                     

  Впоследствии был получен универсальный вид формулы Томсона при учете безразмерной функции  f(x) для атома, имеющего  n  валентных электронов:

                         

                 

На рис.3 представлена данная функция  f(x)  и экспериментальные точки для атомов водорода и гелия. Формула Томсона, несмотря на сделанные допущения (о валентном электроне), дает достаточно хорошие данные для сечения ионизации ряда атомов. При квантово-механическом выводе данного сечения ионизации формула была скорректирована формула путем введения логарифмической зависимости от E в числителе: .       

                                           Рис.3     

                                                                                                        

      Рассмотрим в качестве примера зависимости для сечений ионизации атомов и молекул электронным ударом для некоторых газов (рис.4). Характерной формой зависимости является наличие порога для величины Eпор, максимума для сечения в диапазоне  i=(0,5-4)10-16 см2 и последующего спада при увеличении энергии в диапазоне  Е>200 эВ.

                                     

                                      Рис.4

                                                                                                  

       Представим наиболее важные результаты для термической ионизации и фотоионизации. Данные процессы играют важную роль для низкотемпературной плазмы, в особенности для дугового, искрового и скользящего разрядов. При термической ионизации рассматривается суммарный вклад электронов и атомов в возбуждение и в ионизацию атомов. Для вывода формул используется формула Саха, использующая представления о термодинамическом равновесии в плазме. Основными случаями являются (рис.5) ступенчатая (а) и прямая (б) ионизации.

                                            Рис.5

                                                               а)                                     б)

                                                                            

Для ступенчатой ионизации водорода коэффициент ионизации имеет вид:

                                  ,       ga=2,      C=3 6                                                 

Прямая  ионизация водорода описывается следующей формулой:

                                  –сечение ионизации электронами

В данной формуле предполагается, что наибольший вклад в ионизацию атомов вносят электроны.

                    

При низкой температуре Te ступенчатая ионизация преобладает над прямой ионизацией, т.е.:   .

          Фотоионизация является сугубо пороговым процессом возможным, когда энергия фотона превышает энергию ионизации атома (E>I). Процесс фотоионизации описывается формулой:

                     + А = А+ + e-

Для атома водорода при энергии фотона более энергии ионизации () выражение для сечения фотоионизации имеет вид:

                                  -боровский радиус водорода

В случае сильновозбужденного состояния атома водорода справедлива формула Крамерса:

                                n – главное квантовое число

Значения сечений фотоионизации для ряда атомов находятся в диапазоне ф=(0,1-8)10-18 см2. Значение  ф максимально у порога и затем спадает при увеличении частоты фотона.                                                   


d

j

x

1

+Ze

+ze

0,08

0,12

0,04

0,16

0,20

1

5

10

20

30

50

f(E/I)

x=E/I

 He

 H

E, эВ

i10-16

см2

Ar

N2

H2

Ne

He

0

50

100

150

200

1

2

3

4

непрерывный спектр

непрерывный спектр


 

А также другие работы, которые могут Вас заинтересовать

11677. Баланс ліквідності підприємства 36.76 KB
  Тема: Баланс ліквідності підприємства. Мета: зробити фінансовий аналіз балансу ліквідності підприємства. Хід роботи Висновок: З цих даних отримуємо А1 П1 А2 П2 А3 П3 А4 П4 тобто ліквідність балансу відрізняється від абсолютної. При цьому нестача коштів по одній гру
11678. Моделювання та мінімізація логічних функції в різних пакетах прикладних програм 1.39 MB
  Використання електроніки в електроенергетиці, є досить розвинене. Майже усі технологічні процеси в галузі електроенергетики автоматизуються за допомогою змодельованих на ЕОМ процесів та схем. Найпоширеніше використання має алгебра логіки, яку далі розглянемо більш детальніше.
11679. Ітераційні методи розвязання систем лінійних алгебраїчних рівнянь. Метод Зейделя. Метод релаксації 40.97 KB
  Лабораторна робота №2 Ітераційні методи розв’язання систем лінійних алгебраїчних рівнянь. Метод Зейделя. Метод релаксації. Мета роботи: познайомитися з ітераційними методами розв’язання систем алгебраїчних рівнянь реалізувати заданий за варіантом метод у серед...
11680. МОДЕРНИЗАЦИЯ ЭЛЕКТРОПРИВОДА ЛЕНТОЧНОГО КОНВЕЙЕРА К-22 УГЛЕПОДГОТОВИТЕЛЬНОГО ЦЕХА №1 ЧерМК ОАО «Северсталь» 1.26 MB
  Развитие электропривода связывается с разработкой российским академиком Б. С. Якоби первого двигателя постоянного тока вращательного движения. Использование данного мотора на небольшом судне, которое в 1838 году произвело пробные поездки на Неве...
11681. Розвязання систем нелінійних рівнянь. Метод Ньютона 44.19 KB
  Лабораторна робота №4 Тема: Розв’язання систем нелінійних рівнянь. Метод Ньютона. Мета роботи: познайомитися з методами розв’язання систем нелінійних алгебраїчних рівнянь реалізувати заданий за варіантом метод у середовищі МatLAB. Завдання для виконання лаборат
11682. Автоматизація управління персоналом на базі програмного засобу Система:Кадры 117.73 KB
  Лабораторна робота №5 Тема: автоматизація управління персоналом на базі програмного засобу Система:Кадры. Мета роботи: набути практичних навичок роботи з автоматизованою системою кадрового обліку Кадры навчитися вести безперервний облік персоналу підприємства...
11683. Организация работы лесопилки с использованием инновационных программных продуктов 720 KB
  1. Минимизация отходов лесопилки Пилорама заготавливает оцилиндровывает и сушит 20футовые брёвна которые в дальнейшем используются для строительства бревенчатых домов бань и т.п. Поступил новый заказ для которого требуется 275 шт. 8футовых 100 шт. 10футовых и 250 шт. 12фу...
11684. Системи счислення в ЕОМ 64.5 KB
  ЛАБОРАТОРНА РОБОТА № 1 Тема: Системи счислення в ЕОМ. Ціль: Знайомство системами счислення в ЕОМ виконання арифметичних дій вивчення правил переведення із однієї системи счислення до іншої. Теоретичні відомо...
11685. Застосування спеціального програмного забезпечення для роботи з 8-ми розрядним мікропроцесором 309 KB
  Лабораторна робота №2 Застосування спеціального програмного забезпечення для роботи з 8ми розрядним мікропроцесором. ЗАВДАННЯ Відповідно до свого варіанта завдання за допомогою емулятору процесора К580ВМ80 записати та виконати прості арифметичнологічні операці