19220

ИОНИЗАЦИЯ И ВОЗБУЖДЕНИЕ ЧАСТИЦ В ГАЗЕ

Лекция

Физика

ИОНИЗАЦИЯ И ВОЗБУЖДЕНИЕ ЧАСТИЦ В ГАЗЕ Плазму как среду состоящую из заряженных частиц характеризует степень ионизации или соотношение между количеством заряженных и нейтральных частиц: концентрация электронов конц...

Русский

2013-07-11

163 KB

13 чел.

ИОНИЗАЦИЯ И ВОЗБУЖДЕНИЕ ЧАСТИЦ В ГАЗЕ

  Плазму, как среду, состоящую из заряженных частиц, характеризует степень ионизации  или соотношение между количеством заряженных и нейтральных частиц:

                        

       - концентрация электронов, - концентрация атомов

В случае низкотемпературной плазмы, когда температура составляет Тe0,1-1 эВ, степень ионизации невелика 0,01-0,1. Это присуще ряду газовых разрядов: тлеющему, дуговому, искровому и т.д. С другой стороны, высокотемпературная водородная плазма при температуре Тe=1-10 кэВ практически полностью ионизована и  ~1. Такая ситуация реализуется на установках по получению управляемого термоядерного синтеза: токамаках, магнитных ловушках, пинчах и т.д.

       Ввиду изначального присутствия заряженных частиц весьма важными при рассмотрении плазмы являются процессы, связанные с ионизацией нейтральных частиц и их возбуждением. Приведем классификацию процессов, свойственных низкотемпературной плазме:

1) Упругие процессы, которые происходят при столкновении заряженных и нейтральных частиц. При каждом упругом столкновении частица теряет часть своей энергии. Для столкновения электрона и молекулы – это приблизительно 10-4 часть исходной энергии электрона. Ввиду этого, чтобы отдать значительную часть своей энергии, электрон должен совершить около 104 столкновений.

2) Неупругие процессы, приводящие к возбуждению и ионизации нейтральных частиц при их взаимодействии с заряженными частицами и фотонами. Наиболее важным видом ионизации является процесс, связанный с электронным ударом. Тем не менее, определенный вклад в ионизацию вносят процессы ионизации ионами и нейтральными частицами. Для ряда газовых разрядов имеют значение фотоионизация квантами ультрафиолетового диапазона, а также термоионизация, учитывающая суммарный эффект увеличения температуры газа. При возбуждении электронами нейтральных частиц наиболее важными являются процессы, приводящие к возбуждению электронных (метастабильных) состояний и молекулярных колебаний, и процесс диссоциации молекул.

3) Образование отрицательных ионов (прилипание), свойственное низкотемпературной плазме, т.к. энергия связи электрона с атомом (молекулой) при этом достаточно мала (Е=0,1-3 эВ) и при повышении температуры газовой среды отрицательные ионы разрушаются.         

       При рассмотрении упругих столкновений частиц важной характеристикой является сечение процесса  , которое в случае идеального газа имеет порядок  10-16 см2. Упругое столкновение электрона с атомами и молекулами представляет собой взаимодействие электрона со сложным силовым полем нейтральной частицы. Сечение данного процесса  зависит от энергии электрона, и, как правило, находится экспериментально. Для учета рассеяния электрона на различные углы вводится так называемое транспортное сечение:

                    

Где   - средний косинус угла рассеяния. Эффективная частота столкновений и длина пробега при этом выражаются соответственно:

                    

                                                                                  

  В низкотемпературной плазме отдельные взаимодействия описываются потенциалом, имеющим следующий вид:

              

В данной формуле - постоянный коэффициент, а знак плюс или минус выбирается в зависимости от отталкивания или притяжения соответственно. Показатель степени n=1 полагается при кулоновском взаимодействии, n=4 описывает случай индуцированного взаимодействия электронов или ионов с поляризованной молекулой, обладающей дипольным моментом, и для взаимодействия поляризованных молекул иногда используют потенциал с n=9-15.                     

       Рассмотрим основные результаты, связанные с выводом формулы Резерфорда, необходимой для получения кулоновского сечения заряженных частиц. Формула для числа частиц, рассеянных в 1 с в телесный угол  на рассеивающем центре (1) с зарядом  +Ze (рис.1) имеет вид:

                         

В данной формуле n - концентрация рассеиваемых частиц (2), v - их скорость, () -кулоновское сечение. Заряд каждой частицы  +ze.

                                                    Рис.1

                                                                                                     

      Взаимодействие налетающей частицы (2) и рассевающего центра (1) рассматривается в системе центра масс (Ц -системе) и описывается потенциалом:

                                 

      Для угла рассеивания    записываются следующие выражения:

                                                           

Где М -приведенная масса, v0 –скорость налетающей частицы в Ц -системе.

       Дифференциальное сечение кулоновского взаимодействия выражается как:

                      

       Окончательный вариант формулы Резерфорда для сечения имеет вид:

                      

               

  Одной из первых формул для ионизации атома электронным ударом явилась формула Томсона (1912 г.). Ее вывод был основан на представлениях классической механики и электродинамики. Ионизация атома представляется в виде формулы:

              e- + A  2e- + A+

Томсон исходил из представления, что столкновение электрона происходит с валентным электроном атома, которому в результате столкновения передается энергия E>I (I – энергия ионизации). В момент столкновения связью валентного электрона и атома можно пренебречь. Это существенно упрощает вывод. Рассмотрим столкновение электрона и атома в Ц–системе. В силу слабой связи валентного электрона и атома рассматривается взаимодействие рассеиваемого электрона и иона. Для энергии, переданной атому электроном в зависимости от угла рассеивания  , записывается следующая формула:

                          

На рис.2 представлены скорости электрона  до и после взаимодействия, и -скорость атома.

                                                                                     Рис.2

Согласно формуле Резерфорда кулоновское сечение для атома водорода имеет вид:

          

После интегрирования выражения от энергии ионизации I до энергии налетающего электрона  получается следующее выражение:

          

Для сечения ионизации атома водорода электронным ударом формула Томсона имеет вид:

                     

  Впоследствии был получен универсальный вид формулы Томсона при учете безразмерной функции  f(x) для атома, имеющего  n  валентных электронов:

                         

                 

На рис.3 представлена данная функция  f(x)  и экспериментальные точки для атомов водорода и гелия. Формула Томсона, несмотря на сделанные допущения (о валентном электроне), дает достаточно хорошие данные для сечения ионизации ряда атомов. При квантово-механическом выводе данного сечения ионизации формула была скорректирована формула путем введения логарифмической зависимости от E в числителе: .       

                                           Рис.3     

                                                                                                        

      Рассмотрим в качестве примера зависимости для сечений ионизации атомов и молекул электронным ударом для некоторых газов (рис.4). Характерной формой зависимости является наличие порога для величины Eпор, максимума для сечения в диапазоне  i=(0,5-4)10-16 см2 и последующего спада при увеличении энергии в диапазоне  Е>200 эВ.

                                     

                                      Рис.4

                                                                                                  

       Представим наиболее важные результаты для термической ионизации и фотоионизации. Данные процессы играют важную роль для низкотемпературной плазмы, в особенности для дугового, искрового и скользящего разрядов. При термической ионизации рассматривается суммарный вклад электронов и атомов в возбуждение и в ионизацию атомов. Для вывода формул используется формула Саха, использующая представления о термодинамическом равновесии в плазме. Основными случаями являются (рис.5) ступенчатая (а) и прямая (б) ионизации.

                                            Рис.5

                                                               а)                                     б)

                                                                            

Для ступенчатой ионизации водорода коэффициент ионизации имеет вид:

                                  ,       ga=2,      C=3 6                                                 

Прямая  ионизация водорода описывается следующей формулой:

                                  –сечение ионизации электронами

В данной формуле предполагается, что наибольший вклад в ионизацию атомов вносят электроны.

                    

При низкой температуре Te ступенчатая ионизация преобладает над прямой ионизацией, т.е.:   .

          Фотоионизация является сугубо пороговым процессом возможным, когда энергия фотона превышает энергию ионизации атома (E>I). Процесс фотоионизации описывается формулой:

                     + А = А+ + e-

Для атома водорода при энергии фотона более энергии ионизации () выражение для сечения фотоионизации имеет вид:

                                  -боровский радиус водорода

В случае сильновозбужденного состояния атома водорода справедлива формула Крамерса:

                                n – главное квантовое число

Значения сечений фотоионизации для ряда атомов находятся в диапазоне ф=(0,1-8)10-18 см2. Значение  ф максимально у порога и затем спадает при увеличении частоты фотона.                                                   


d

j

x

1

+Ze

+ze

0,08

0,12

0,04

0,16

0,20

1

5

10

20

30

50

f(E/I)

x=E/I

 He

 H

E, эВ

i10-16

см2

Ar

N2

H2

Ne

He

0

50

100

150

200

1

2

3

4

непрерывный спектр

непрерывный спектр


 

А также другие работы, которые могут Вас заинтересовать

35144. Создание и заполнение справочников 8.26 MB
  Выполнить действия: А Выбрать пункт меню Справочник щелчком левой кнопки мыши Б Выбрать команду Фирмы щелчком левой кнопки мыши если разрешен учет по нескольким фирмам В Нажать клавишу SHIFTENTER для ввода новой фирмы Астра Г Заполнить реквизиты фирмы 2. Выполнить действия: А Выбрать пункт меню Справочник щелчком левой кнопки мыши Б Выбрать команду Места хранения щелчком левой кнопки мыши В Нажать клавишу Insert для ввода нового элемента Г в пункте Тип выбрать Склад Д в пункте Вид склада выбрать Склад оптовый Е Можно ввести...
35145. Ввод начальных остатков 2.75 MB
  12 в пункте Сумма: ничего не вводим в пункте Содержание операции: ввести для чего предназначена данная операция и Enter 4 Переходим к заполнению табличной части: А введем остатки по уставному фонду для Кливер и Русь колонка Дт – это дебет счета. Из выпадающего меню выбираем счет 00 это специально придуманный счет используемый только для введения остатков в данной программе и ENTER ENTER колонка Кт – это кредит счета. Из выпадающего меню выбираем счет 40 Уставной фонд и ENTER ENTER колонка СубконтоКт – это объект...
35146. Учет поступления материальных ценностей 16.32 MB
  Д в пункте Поставщик Контрагент из выпадающего меню выбрать группу Поставщики а затем элемент Ротонда Е в пункте Примечание можно дать краткую характеристику о вводимой информации Ж в пункте Номер счета поставщика задать номер З перейдем к заполнению табличной части: в колонке ТМЦ справочник номенклатура выбрать группу Товары элемент Костюм женский в колонке Ед. выбрать шт в колонке Колво ввести 31 все остальные колонки заполнятся автоматические ввести также товары костюм мужской и пиджак мужской и ОК И в результате...
35147. Информационные системы. Общие сведения 10.58 MB
  К средствам извлечения информации относятся: штатные средства ручного ввода клавиатура мышь; средства автоматизированного ввода с твердых копий сканеры; специализированные средства ручного ввода дигитайзеры световые перья сенсорные экраны; средства ввода речевой информации; средства ввода данных с аппаратуры датчики измерительные устройства аппаратура связи. Это программное обеспечение может быть как достаточно простым и предполагать только передачу операционной системе данных от аппаратных компонентов так и сложным...
35148. редства удалённого выполнения заданий в Windows 38 KB
  Планировщик заданий Windows осуществляет настройку как для локального компьютера так и для удаленной системы. На удаленных системах эта возможность обеспечивается совместной работой нескольких служб и программ: Планировщик заданий это стандартная служба Windows управляющая планировщиком заданий. Создание заданий на локальном компьютере осуществляется через: ПускВсе программыСтандартныеНазначенные задания Создание заданий на удаленном компьютере осуществляется через: Сетевое окружениеОтобразить компьютеры рабочей группывыбираем...
35149. Средства удалённого доступа к сети в Windows 40 KB
  в ОС Windows XP имеются встроенные инструменты для организации таких подключений : Remote Desktop Удаленный рабочий стол Remote ssistnce Удаленный помощник. Remote ssistnce Remote ssistnce позволяет пригласить другого пользователя друга знакомого специалиста для оказания помощи. При этом приглашенный участник в отличие от использования Remote Desktop может наблюдать за действиями пользователя. При этом Remote ssistnt самостоятельно управляет настройками соединения подстраивая объем передаваемых данных под возможности канала...
35150. Виртуальные частные сети. Архитектура и протоколы 42.5 KB
  VPN англ. В зависимости от применяемых протоколов и назначения VPN может обеспечивать соединения трёх видов: узелузел узелсеть и сетьсеть. Уровни реализации Обычно VPN развёртывают на уровнях не выше сетевого так как применение криптографии на этих уровнях позволяет использовать в неизменном виде транспортные протоколы такие как TCP UDP. Пользователи Microsoft Windows обозначают термином VPN одну из реализаций виртуальной сети PPTP причём используемую зачастую не для создания частных сетей.
35151. Методы повышения надёжности хранения данных. Технология RAID 50.5 KB
  Технология RID Одна из причин ведущих к утрате информации аппаратные сбои и поломки. RID это акроним от Redundnt rry of Independent Disks. Этим набором устройств управляет специальный RIDконтроллер контроллер массива который инкапсулирует в себе функции размещения данных по массиву; а для всей остальной системы позволяет представлять весь массив как одно логическое устройство ввода вывода. В зависимости от уровня RID проводится или зеркалирование или распределение данных по дискам.
35152. Цели и задачи администрирования 25 KB
  чтобы предоставить пользователям ИС наилучшее возможности по эффективному использованию ресурсов ИС при объективных ограничениях. 3 квалифицируемая помощь пользователям. Здесь задача состоит в том чтобы реализовать в ИС выбранную стратегию ИБ на базе 1 или нескольких политик безопасности обеспечить использование ИС только санкционированным пользователям предусмотреть резервное копирование и восстановления отдельных ресурсов или всей ИС.