19221

ТЕРМОДИНАМИЧЕСКОЕ РАВНОВЕСИЕ В ГАЗЕ

Лекция

Физика

Лекция 2 ТЕРМОДИНАМИЧЕСКОЕ РАВНОВЕСИЕ В ГАЗЕ Одним из известных подходов к описанию плазмы является ее сопоставление с термодинамической системой. При этом состояние плазмы характеризуется такими величинами как температура энтропия и т.д. В термодинамик...

Русский

2013-07-11

101.5 KB

10 чел.

Лекция 2

ТЕРМОДИНАМИЧЕСКОЕ РАВНОВЕСИЕ В ГАЗЕ

      Одним из известных подходов к описанию плазмы является ее сопоставление с термодинамической системой. При этом состояние плазмы характеризуется такими величинами, как, температура, энтропия и т.д. В термодинамике вводится понятие равновесной системы, причем достижение равновесных параметров осуществляется по прошествию определенного времени. Условия для существования равновесной системы в лабораторных условиях реализуются, как правило, очень редко. Достаточно известными подходами к описанию плазмы с использованием термодинамики являются модели: полного термодинамического равновесия (ПТР) и локального термического равновесия (ЛТР). Обсудим их применение для лабораторной и природной плазмы.

       Для модели ПТР требуется выполнение следующих требований: 1) распределения Максвелла по скоростям частиц (ионов и электронов), 2) распределения Больцмана для населенностей уровней частиц, 3) распределения Планка для излучения, 4) распределения Саха для концентрации заряженных частиц. В качестве примера лабораторного источника плазмы, для которого пригодна модель ПТР, можно отнести капиллярный разряд конструкции Подмошенского. В хорошем соответствии с моделью ПТР находится фотосфера Солнца.

       Для модели ЛТР не требуется выполнение необходимых условий во всем объеме плазмы. Подразумевается выполнение следующих распределений в небольшом локальном объеме плазмы: 1) распределения Максвелла по скоростям частиц, 2) распределения Больцмана для населенностей уровней частиц, 3) распределения Саха для концентрации заряженных частиц.  Модель ЛТР широко применяется для разных видов лабораторной и космической плазмы.

       Изложим понятия, необходимые для определения соответствия изучаемой плазмы той или иной модели. Рассмотрим вопрос, связанный с определением оптической толщины плазмы. Для этой цели вводится величина – длина свободного пробега фотона  lп. Ее значение обычно определяется экспериментально, т.к. расчет достаточно сложен. В зависимости от соотношения длины пробега  lп и размеров плазмы  L, плазменная среда может быть оптически тонкая и толстая. Для оптически тонкой плазмы длина пробега фотона должна быть больше размеров плазмы:  lп >L. В случае оптически толстой плазмы реализуется обратная ситуация:  lп <L. Условие оптически толстой плазмы означает, что фотон, возникший во внутренней области плазмы на пути к поверхности, может испытать многократные поглощения, т.е. возникает процесс переизлучения фотона. Анализ контуров спектральных линий в данном случае может дать информацию о сильном искажении контура линии, как, например, об уменьшении интенсивности и провале в центре линии. В случае ПТР плазма должна быть обязательно оптически толстой.

       При ЛТР обычно требуется получить экспериментальное подтверждение о выполнении для исследуемой плазмы распределения Больцмана.  В экспериментах с капиллярным разрядом, при наличии в излучении плазмы водородных линий (серии Бальмера), возможен графический анализ относительных интенсивностей данных линий.   

       Для количественного описания ионизационного равновесия известным индийским астрофизиком Мегнадом Саха в 1920 г. была получена формула, характеризующая зависимость концентрации плазмы от температуры и энергии ионизации в случае водородной плазмы. При выводе данной формулы предполагается, что плазма достигла состояния термодинамического равновесия. Допустим, что ионизация водорода осуществляется из основного состояния (n=1) в непрерывный спектр (рис.1). Это, конечно, является упрощенным подходом, т.к. не учитывается ионизация из других состояний (n>1). Для вероятности нахождения электрона в состоянии с энергией En считается справедливым распределение Гиббса:

                        

                                                                               

                                                                      Рис.1

                                                                                    

                                                                                                                      

Для отношения вероятностей нахождения электрона в состоянии непрерывного спектра с энергией E2 и в основном состоянии с энергией E1 можно записать следующее соотношение:

              

В данной формуле основное состояние считается невырожденным и его статистический вес равен g1=1. Для нахождения g2 воспользуемся формулой для числа состояний фазового пространства непрерывного спектра:

              

Где s – число степеней свободы. Числитель данной формулы записывается следующим образом:

               ,        ,                   

Запишем g2 с учетом этих формул:

             

При данном рассмотрении предполагается, что для плазмы реализуется распределение Больцмана. Поэтому концентрация частиц в определенном состоянии пропорциональна вероятности, т.е. можно записать следующее отношение:

             

В результате формула Саха для концентрации водородной плазмы записывается в следующем виде:

                    

Ввиду квазинейтральности плазмы (neni) данную формулу часто переписывают, перенося величину  ne из правой части в левую. Тогда в правой части остаются величины, зависящие от Т, т.е. множитель с температурой в степени 3/2 и экспоненциальный множитель, содержащий температуру.

       Рассмотрим основные предположения, которые используются для вывода формулы Саха для ионов. Допускается наличие распределения Больцмана для населенностей иона с зарядностью  z  и с зарядностью  z+1. Предполагается, что прямая ионизация может происходить как из основного состояния иона (n=1), так и из других состояний с большей энергией (n>1). Поэтому в окончательную формулу подставляется статистическая сумма G, содержащая произведения статистических весов отдельных уровней и экспоненциального множителя из распределения Больцмана.

                   

          В результате формула Саха для ионов будет иметь вид:                 

                  

                       

       Зависимость концентрации плазмы от температуры в случае равновесной плазмы, т.е. формула Саха, позволяет получить количественное выражение для такой важной характеристики как степень ионизации плазмы. Формула для степени ионизации плазмы имеет вид:

                     

        - концентрация электронов, - концентрация атомов

Случаю высокотемпературной плазмы, т.е. практически полностью ионизованной соответствует значение 1. Для низкотемпературной, т.е. слабоионизованной плазмы полагается диапазон <<1. Рассмотрим выражение для степени ионизации, которое получается с использованием формулы Саха:

                 

                   ,         [n]=см-3,    []=эВ

                                

                                                                 Рис.2

                                                                                                                  

Представим графические зависимости степени ионизации от температуры, полученные с помощью данной формулы для цезия, водорода и гелия (рис.2). Для расчетов использовалась концентрация газа равная n=1016 см-3. Самым легко ионизуемым газом является цезий, у которого полная ионизация (1) наступает практически при Т1 эВ. Для водорода полная ионизация осуществляется при Т1,8 эВ, а для гелия при Т3 эВ. Для большей концентрации  n=1017 см-3 полная ионизация водорода  1 согласно расчету наступает даже при Т0,16 эВ=1850 К. Приведенные расчеты температур являются несколько завышенными относительно реальных экспериментов, т.к. не учитывается влияние примесей, существующих в плазме и приводящих к уменьшению реальных значений температуры.                                                                              

       Рассмотрим содержание формулы Эльверта для соотношений констант ионизации и рекомбинации. В высокотемпературной плазме при термодинамическом равновесии может реализоваться случай, когда процессы ионизации и рекомбинации уравновешивают друг друга.  Представим формулы для данных процессов:                                          

                     

                     

Скорость ионизации ([Qi ]= (част/cсм3)) имеет выражение:

                           

Где  ki  константа ионизации, na – концентрация атомов, ne – концентрация электронов.                   

Скорость рекомбинации ([Qr]= (част/cсм3)) запишется в виде:

                     

Где  kr константа рекомбинации, ni – концентрация ионов.

В стационарном состоянии, когда реализуется равновесие между процессами ионизации и рекомбинации, данные скорости можно приравнять:

                                         

В результате отношение концентраций ионов к концентрации атомов равно отношению констант ионизации  и рекомбинации, что составляет формулу Эльверта:                      

                                           

Следует заметить, что данные константы имеют зависимость от температуры    и.

 


n=2

n=1

1, g1

E2, g2

Eи

4

3

2

1

T, эВ

1,0

0

3

2

1

0,5

     n=1016 см-3

1) Cs (E1=3,9 эВ)

2) H (E2=13,6 эВ)

3) He (E3=24,5 эВ)


 

А также другие работы, которые могут Вас заинтересовать

47589. Социологический словарь 5.78 MB
  Социологический словарь отв. Социологический словарь является научно-справочным изданием освещающим в сжатой форме наиболее важные понятия социологии в историческом и современном ее аспектах. Словарь четко обозначает основные процессы развития социологической науки содержит справочные статьи по всем направлениям современной социологии: философско-методологические основания общая теория история предмета отраслевые дисциплины исследования а также существенно обогащает ее терминологию и понятийный аппарат. Для...
47590. ОСНОВЫ ГЕНЕТИКИ ЧЕЛОВЕКА 1.32 MB
  Взаимодействие генов Взаимодействие аллельных генов Взаимодействие неаллельных генов Генотип – совокупность система всех генов организма которые взаимодействуют между собой.
47591. МОЖНА ВСЕ НА СВІТІ ВИБИРАТИ, СИНУ, ВИБРАТИ НЕ МОЖНА ТІЛЬКИ БАТЬКІВЩИНУ 127.5 KB
  ПОСЛІДОВНІСТЬ ВИКОНАННЯ ПРОЕКТУ МОЖНА ВСЕ НА СВІТІ ВИБИРАТИ СИНУ ВИБРАТИ НЕ МОЖНА ТІЛЬКИ БАТЬКІВЩИНУ ДАТА ТЕМА ЗАХОДІВ МЕТА ЗАХОДІВ ВИД ДІЯЛЬНОСТІ 1 вересня Перший урок Україна – наш спільний дім Жовтень Ой роде наш красний роде наш прекрасний 9 листопада До Дня слов’янської писемності та мови Вчімося друзі слово любити Презентація командне змагання 19 грудня Святий Миколай до нас завітай міцного здоров’я на весь рік дай Театральне дійство 25 грудня Запрошення на Андріївські вечорниці Фестиваль української культури 21 січня...
47592. Проектування лінійних споруд волоконно-оптичних ліній зв’язку.Методичний посібник 2.43 MB
  Прокладання кабелю. Вибір марки кабелю та визначення його придатності. Конструктивний розрахунок оптичного кабелю та визначення його конструкції 19 5.4 Вибір оптичних волокон оптичного кабелю та розрахунок максимальної довжини регенераційної ділянки 22 5.
47593. Rational Unified Process 4.13 MB
  Планирование итеративного проекта Технологические процессы 101 7 Технологический процесс управления проектом 103 Цель 103 Планирование итеративного проекта 104 Понятие риска 106 Понятие метрики 108 Что такое метрика 109 Исполнители и артефакты 110 Технологический процесс 111 Создание плана итерации 119 8 Технологический процесс моделирования производства 124 Цель 124 Зачем моделировать производство 124 Использование методов программотехники в процессе. Основные задачи книги Благодаря этой книге вы узнаете чем является Rtionl Unified...
47594. Фізіологія і патологія статевого формування. Диференційний діагноз різних форм статевого формування. Принципи лікування. Методичні вказівки 112.5 KB
  ДИФЕРЕНЦІЙНИЙ ДІАГНОЗ РІЗНИХ ФОРМ СТАТЕВОГО ФОРМУВАННЯ. Методичні вказівки для студентів та лікарівінтернів Затверджено вченою радою ХДМУ Протокол № Харків ХДМУ Фізіологія і патологія статевого формування. Диференційний діагноз різних форм статевого формування.
47595. СЛОВНИК СТРАХОВИХ ТЕРМІНІВ 283.5 KB
  АВІАЦІЙНЕ СТРАХУВАННЯ (aviation insurance) - страхування ризиків, пов'язаних із використанням авіаційної та космічної техніки. Іноді страхування космічних ризиків виділяється в окремий вид. А. с. охоплює страхування літаків, вертольотів та іншої авіаційної техніки від пошкодження й знищення; страхування відповідальності перед пасажирами й третіми
47596. ФІНАНСИ ПІДПРИЄМСТВ 417.5 KB
  Виручку від реалізації продукції робіт і послуг; 3. Фінансово розрахункові відносини на 1 стадії кругообігу капіталу виникають: 1 при закупівлі товарноматеріальних цінностей для здійснення процесу виробництва продукції виконання робіт надання послуг; 2 при розрахунках з покупцями при реалізації продукції робіт послуг; 3 при розподілі новоствореної вартості; 4 при розрахунках: з працівниками за участь в процесі виробництва продукції виконання робіт надання послуг з соціальними фондами по нарахуваннях і перерахуваннях внесків...