19222

ДВИЖЕНИЕ ЗАРЯЖЕННЫХ ЧАСТИЦ В ГАЗЕ

Лекция

Физика

Движение заряженных частиц в газе Ввиду рассмотрения тока в слабоионизованном газе или в низкотемпературной плазме требуется определить основные величины связанные с подвижностью электронов и ионов. Существует ряд экспериментов в которых были найдены значен...

Русский

2013-07-11

112.5 KB

19 чел.

Движение заряженных частиц в газе

Ввиду рассмотрения тока в слабоионизованном газе (<<1) или в низкотемпературной плазме, требуется определить основные величины, связанные с подвижностью электронов и ионов. Существует ряд экспериментов, в которых были найдены значения подвижностей заряженных частиц для различных газов. Первой теорией подвижности ионов явилась созданная в начале XX века теория Ланжевена, получившая основные закономерности, подтверждаемые экспериментально.           

       Рассмотрим дрейфовое движение ионов. Предположим, что энергия, теряемая при любом упругом или неупругом столкновении иона и атома определяется следующим неравенством:

                   

          - частота столкновений,  f - доля потери энергии при одном столкновении

         eEx – энергия, которую набирает ион в направлении электрического поля,

         x – смещение в направлении электрического поля

                                                                    Рис.1

                                                                                                  

      Допустим, что существует превышение количества упругих столкновений над количеством неупругих. Для стационарного режима движения данные энергии по порядку равны:

                  

      Скорость дрейфа ионов определяется в виде:

                   

Коэффициентом пропорциональности является величина K –подвижность ионов, т.е. скорость движения по направлению силовой линии электрического поля при  Е= 1 В/м.

      Для определения подвижности ионов в середине XX века были предложены различные экспериментальные методы. Рассмотрим наиболее известные эксперименты. На рис.2 представлен метод запирающих сеток.  

                                                                   Рис.2

                                                                                                         

       На электроды  В  и  С , расположенные в камере с пониженным газовым давлением подается постоянное напряжение U. Считается, что в данном пространстве существует низкая концентрация ионов и они движутся в направлении электрода В.  На сетки 1 и 2 подается переменное синусоидальное напряжение, как показано на рис.2. В моменты, когда напряжение на данных сетках равно нулю, существуют наиболее благоприятные условия для прохождения ионов. В эксперименте варьируется напряжение U и период  величины напряжения на сетках. Условие прохождения ионов может быть записано в виде:       

                     n =1, 2, 3…

Из данной формулы находится дрейфовая скорость, а затем рассчитывается подвижность ионов   К.

       В качестве другого метода определения подвижности рассмотрим эксперимент Хорнбека (рис.3). В камере установлены электроды, один из которых сетчатый. Параметры установки были следующие: расстояние между электродами  d=1 см, давление в камере p=0,1-30 торр, ток I~0,1 мкА, E/p~10-103 В/смторр. В экспериментах использовались инертные газы: гелий, неон, аргон, ксенон, криптон. Межэлектродное пространство (1) облучалось УФ-излучением с помощью искры (2). Часть излучения направлялось на фотодиод (5). После вспышки искры в пространстве (1) возникает таунсендовский лавинный разряд и на аноде за время  te ~0,1 мкс собираются электроны, а на катоде – ионы за время ti =2-20 мкс. Данные импульсы регистрировались на осциллографе. Полученные результаты для подвижностей ионов нашли хорошее соответствие с теорией Ланжевена. Представим значения подвижностей для ионов неона в газообразном неоне при Т=300 К и  n=2,71019 см-3, полученные в данных экспериментах и найденные из теории Ланжевена:

        Кэксп4,4 см2с,          Ктеор6,7 см2с   

          

                                                     

                                                   Рис.3

                                                                                                                    

                        

       Представим теорию подвижности ионов, разработанную известным французским ученым Полем Ланжевеном в 1903-05 г.  В первой теории (1903 г.) Ланжевен исходил из следующих предположений.

1) Ионы и электроны представляют собой непроницаемые упругие шары, поэтому считается, что взаимодействие происходит только в момент столкновения.

2) Выполняются следующие неравенства:

                            ()

Энергия, набранная ионом в электрическом поле, значительно меньше его средней кинетической энергии.

3) Плотность ионов  ni  мала и взаимодействиями ионов друг с другом можно пренебречь.

      Обозначим через x длину между двумя столкновениями иона с нейтральными атомами (рис.1). Данные длины  x  статистически распределены около   - средней длины свободного пробега одинаковой для ионов и молекул. Считается, что в результате столкновения ион полностью теряет свою скорость. Время между двумя столкновениями определяется в виде  . Расстояние, пройденное ионом при ускорении в электрическом поле выражается в виде:

               

       Для вычисления среднего значения   требуется усреднить величину  x2 с помощью распределения, учитывающего длину свободного пробега   .

              

Где  -макроскопическое эффективное сечение ионно-молекулярного упругого рассеяния. С учетом данных выражений величина    выразится следующим образом:

                                                    

           Скорость дрейфа будет равна:

                  

           В результате формула для подвижности ионов будет иметь вид:

                 

С учетом выражения для длины свободного пробега и среднеквадратичной скорости подвижность имеет следующие основные зависимости:

                

Формула правильно выражает зависимость от концентрации n, подтверждаемую экспериментально, но для зависимости от температуры  T  соответствия найдено не было.

        Впоследствии данная формула для подвижности ионов была уточнена Ланжевеном для распределения скоростей и отличия масс иона m и молекулы M. Уточненная формула принимает вид:

               

        vкв -  среднеквадратичная скорость молекул

         ,    D12 – сумма радиусов молекулы и иона, n -  концентрация молекул

Данный вариант формулы лучше соответствовал экспериментальным данным, но все же не учитывал взаимодействие ионов и молекул.                           

        Ввиду этого, в 1905 г. Ланжевеном была создана теория, учитывающая взаимодействие ионов и молекул. Предполагалось, что в результате взаимодействия иона и молекулы происходит поляризация молекулы и у молекулы появляется дипольный момент  d  0. Тогда сила притяжения иона и молекулы будет выражаться в виде:

                       

          - диэлектрическая проницаемость газа, e – заряд иона, n – концентрация молекул                     

С учетом данного взаимодействия формула для подвижности приобретает вид:

                      

                   -плотность газа, - диэлектрическая проницаемость газа,                       

                  M – масса молекулы, m - масса иона                     

                  A(a) – функция Ассе, при а=0,5-4,0 ,  А=0,51-0,18

                      

                  p – давление газа, D12 – сумма радиуса иона и молекулы

Окончательный вариант подвижности ионов в теории Ланжевена нашел наилучшее соответствие с экспериментальными данными.                                                         

       Теоретическое представление выражения для подвижности электронов осложняется тем, что зависимость дрейфовой скорости от напряженности электрического поля не является линейной. На рис.4 изображены зависимости дрейфовой скорости u от  отношения E/p для некоторых газов. Поэтому данные кривые можно аппроксимировать обычной зависимостью только на линейных участках:

                     

                                        Рис.4

Выражение для подвижности электронов с учетом силы сопротивления движения электрону со стороны среды имеет вид:

                    

     - эффективная частота столкновений электрона с нейтральными частицами.

Данная частота выражается через транспортное сечение  следующим образом:

                     

Транспортное сечение для газов зависит от энергии электронов и измеряется экспериментально. В свою очередь средняя энергия электронов зависит от электрического поля. Ввиду этого, в общем случае подвижность является функцией от напряженности поля  K(E). Соответствие с экспериментальными данными дают расчеты для подвижности, основанные на решении кинетического уравнения для функции распределения электронов.

                                                                                             

                                                                                                

x

x

l

U

+     +    

 +      +    

A

+

1

2

C

B

2

d

К

А

1

3

4

5

H2

N2

u106

см/c

E/p,

В/смторр

6

4

2

20

16

12

8

4

0

He


 

А также другие работы, которые могут Вас заинтересовать

41911. WPF приложение с многооконным (MDI) интерфейсом 19.15 KB
  Часть 1 Необходимо перенести интерфейс редактирования свойств объектов коллекции в отдельное окно. Главное окно приложения должно содержать грид со списком объектов функции открытия сохранения файла коллекции функции удаления объектов из коллекции и вызова окон для редактирования объекта или создания объекта в отдельном окне. При выборе пользователем команды редактирования выделенного объекта в гриде должно появиться отдельное окно для редактирования свойств этого объекта. Должна быть возможность открывать одновременно несколько окон для...
41912. ВИКОРИСТАННЯ СИСТЕМИ S-KEYS ТА ЗАСТОСУВАННЯ РЕЖИМУ ІМІТОВСТАВКИ АЛГОРИТМУ ГОСТ 28147-89 349.39 KB
  Проімітуйте роботу системи S/key при одноразовому підключенні користувача. Для цього підготуйте послідовність . Використовуйте хеш-функцію , значення пароля і параметра з наступної таблиці (пароль заданий в системі числення з основою 16).
41913. СЧЕТЧИКИ И РАСХОДОМЕРЫ ВОДЫ 1.08 MB
  Изучить устройство принцип действия и применение расходомеров и счетчиков Задачи: Изучить устройство принцип действия схемы установки учет передачу данных счетчиков горячей и холодной воды с ультразвуковым преобразователем; Изучить устройство принцип действия схемы...
41914. ИЗУЧЕНИЕ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ УЧЕБНО-НАУЧНОГО КОМПЛЕКСА «ВОЛМА» 2.78 MB
  Изучить элементов системы теплоснабжения учебно-научного комплекса Волма котла на древесной щепе. Технические характеристики котла даны в таблице 1. Технические характеристики котла PYROT 300 Тепловая мощность кВт 300 Минимальная тепловая мощность кВт 80 Коэффициент полезного действия 9092 Максимальное содержание влаги 40 Средняя температура отходящих газов при номинальной тепловой мощности 160 Максимально допустимое давление в системе бар 30...
41915. Измерение параметров электрической энергии 1.13 MB
  Задачи: изучить устройство принцип действия схемы подключения приборов для измерения напряжения силы тока мощности сопротивления цепи и др. Класс точности 25 Пределы измерений Номинальная частота Гц Способ включения 10; 30; 50; 100; 150; 250; 500 В 50; 60; 200; 400500; 800; 1000 непосредственный 175 кВ с трансформатором напряжения 1500 100 В 75 кВ с трансформатором напряжения 6000 100В 12 кВ с трансформатором напряжения 10000 100В 600; 750 В с добавочным сопротивлением Р85 Условия эксплуатации: прибор выдерживает вибрацию с...
41916. Изучить устройство, принцип действия, применение приборов измерения и регулирования температуры 660.36 KB
  Задачи: изучить устройство принцип действия применение приборов измерения температуры основанных на измерении физических размеров изучить устройство принцип действия применение приборов измерения температуры основанных на изменении электрических характеристик сопротивления изучить устройство принцип действия применение приборов измерения температуры основанных на дистанционном измерении температуры изучить устройство принцип действия применение приборов измерения температуры основанных на изменении и регулировании...
41917. Ручне встановлення драйверу монітору на ОС типу Windows® 98; Windows® 2000 809.75 KB
  Місце виконання роботи ПЕК НАУ ВЦ кабінет №145 Хід роботи: Для того щоб встановити драйвер на монітор ми повинні: Зайти на вкладку Монітори→Стандартний монітор та натиснути кнопку Оновити рис.2; У вікні що з'явилося Встановлення обладнання натиснути кнопку далі; В наступному вікні для просто встановлення драйверу вибираємо Провести пошук найбільш свіжого драйверу для пристрою для більш детального пошуку необхідно вибрати Відобразити список всіх драйверів щоб ви могли вибрати найбільш підходящий драйвер в даному випадку...
41918. Робота з Partition Magic 3.05 MB
  Необхідно завантажити програму “ Partition Magic ” з диску. Розбивка диску за допомогою програми “ Partition Magic ” Навчитися робити розбивка диску за допомогою програми “ Partition Magic ”
41919. Ручне встановлення драйвері на ОС типу Windows® 98 267.71 KB
  Місце виконання роботи ПЕК НАУ ВЦ кабінет №145 Хід роботи: Для того щоб вручну встановити драйвер необхідно зробити наступне: Заходимо в диспетчер пристроїв та вибираємо драйвер. Переходимо на вкладку драйверрис.2 та натискаємо на клавішу Обновити драйверрис.