19223

ЭЛЕКТРИЧЕСКИЙ ТОК В ГАЗЕ

Лекция

Физика

ЭЛЕКТРИЧЕСКИЙ ТОК В ГАЗЕ Одной из первых теорий газовых разрядов явилась теория Таунсенда. Данный вид разряда названный его именем таунсендовский имеет очень слабый ток I=1010105 А и практически не имеет видимого свечения темновой разряд. При увеличении си...

Русский

2013-07-11

122 KB

6 чел.

ЭЛЕКТРИЧЕСКИЙ ТОК В ГАЗЕ

       Одной из первых теорий газовых разрядов явилась теория Таунсенда. Данный вид разряда, названный его именем – таунсендовский имеет очень слабый ток I=10-10-10-5 А и практически не имеет видимого свечения (темновой разряд). При увеличении силы тока до 10-4 А разряд постепенно переходит в тлеющий, который обладает достаточно интенсивным свечением. Наиболее известным применением таунсендовского разряда явился созданный в начале XX века счетчик Гейгера (радиактивных излучений).        

       Для описания таунсендовского разряда требуется понимание процессов, происходящих в электронных лавинах в газе. Первоначальные наблюдения электронных лавин в газе были выполнены с помощью камеры Вильсона. Для электронной концентрации в лавине можно записать следующие уравнения. Первое уравнение позволяет получить временную зависимость:                                                      

                           

    (с-1) -  частота ионизации – число ионизаций атомов электронами (в среднем) в 1 с.

После интегрирования находится следующая экспоненциальная зависимость:

                                               

Для связи длины свободного пробега i, частоты ионизации i и скорости дрейфа uд справедлива следующая формула:

                        

       Пространственная зависимость для концентрации в одномерном случае представляется следующим уравнением:

                                          

В данное уравнение входит так называемый первый ионизационный коэффициент Таунсенда   (см-1) -число ионизаций на расстоянии в 1 см.

Интегрирование уравнения дает следующую экспоненциальную зависимость:

                                                   

Первый коэффициент Таунсенда связан с частотой ионизации и дрейфовой скоростью электронов с помощью следующего уравнения:

                       

                                  

       При создании теории Таунсендом (1910 г.) были сделаны следующие исходные предположения относительно характерных особенностей данного разряда:

1) Сила тока считается малой и искажением электрического поля ввиду наличия пространственных зарядов можно пренебречь.

2) Имеют место ионизация газа соударениями электронов и развитие электронных лавин.

3) Разряд может быть несамостоятельным и самостоятельным.

4) Таунсендовский разряд переходит в тлеющий, а затем в дуговой (при увеличении тока).

      В теории вводятся следующие коэффициенты:  

 (см-1) – первый ионизационный коэффициент Таунсенда, т.е. число электрон-ионных пар, образованных одним электроном на пути в 1 см в направлении от катода к аноду вследствие неупругих столкновений электронов с нейтральными частицами газа;

(см-1) – аналогичный коэффициент для ионов, т.е. число свободных электронов, образованных положительным ионом на пути в 1 см при движении от анода к катоду;

  -  количество электронов (в среднем) выделяющихся с катода при попадании на него одного иона вследствие  ион -электронной эмиссии.

      При построении теории предполагалось наличие внешнего ионизатора (источника ультрафиолетового излучения), с помощью которого происходило облучение поверхности катода (рис.1)

                                                                                                          Рис.1

       Были введены следующие исходные величины:

    (част/см2с) -  число электронов, выделяющихся с  1 см2 поверхности катода в  1 с,          

    (А/см2) -  плотность электронного тока с катода.

В простейшем варианте теории ионизация ионами не учитывается, т.е. полагается  <<.

       Ионизация газа электронами на пути dx описывается с помощью уравнения:

              

                  при  x = 0,  n = n0  и   = const  при  E = const

Интегрирование данного уравнения дает экспоненциальную зависимость для концентрации электронов и плотности тока:

              

              

Для числа электронов, достигших анода записывается выражение:

                

Число ионизаций или число образовавшихся ионов имеет вид:

              

       Для рассмотрения стационарного режима разряда все пространство от катода до анода образно разбивается на участки длиной равной длине ионизации электронами - i. Предполагается, что имеет место образование электронных лавин на расстоянии равном  i . В стационарном режиме считается, что число электронов в последующей лавине равно числу электронов, участвующих в развитии предыдущей лавины.

       Вводятся следующие обозначения:

- общее число электронов, вылетевших с катода в 1 с при стационарном режиме. Выражение для  n1 в стационарном режиме разряда может быть записано в виде:

             

                    - число образовавшихся ионов

                    - число выбитых электронов с катода ионами

Для числа электронов, достигших анода можно записать следующее выражение:

             ,       где   

       В результате концентрация электронов и плотность тока на аноде записываются в виде:

                        

               

       Предполагается, что эмиссия ионов с поверхности анода под действием электронов пренебрежимо мала. В данной теории изначально предполагалось действие внешнего ионизатора (источника УФ-излучения), создающего вблизи катода исходную концентрацию заряженных частиц n0. В данном случае разряд считается несамостоятельным. Для перехода разряда из несамостоятельного в самостоятельный требуется выполнение, согласно Таунсенду, условия равенства нулю знаменателя в формуле для плотности тока:                 

               

Эта выражение обычно считается условием зажигания таунсендовского разряда.

       В качестве одной из характеристик разряда вводится также величина:

  (В-1)  -  ионизационная способность – число пар ионов, которое в среднем рождает электрон, проходя в однородном поле разность потенциалов  в 1 В.

также можно построить величину, обратную к ионизационной способности:

  -  количество эВ, которое в среднем затрачивается на образование пары ионов,

 (эВ) -  константа Столетова, т.е. максимальное значение величины  -1.

       Приведем примеры констант Столетова  для некоторых газов:

  воздух:  66 эВ  (E/p  365 В/смторр),

  гелий:   83 эВ (E/p  50 В/смторр),    

  водород:  70 эВ (E/p  140 В/смторр)             

                         

       Рассмотрим вопрос, связанный с потенциалом  зажигания таунсендовского разряда. Для первого коэффициента ионизации Таунсендом была выведена полуэмпирическая формула, учитывающая зависимость данной величины от давления газа и напряжения электрического поля в виде:

                                   

Где А и В являются постоянными коэффициентами, определенными для каждого конкретного газа в диапазоне значений  E/p. Приведем примеры для значений данных коэффициентов: воздух  А15 (смторр)-1, В365 (В/смторр), при E/p100-800 (В/смторр); гелий  А3 (смторр)-1, В34 (В/смторр),  при E/p20-150 (В/смторр).                         

Для вывода условия зажигания используется также условие стационарности таунсендовского разряда:

                            

В результате потенциал зажигания разряда выражается в виде:

                                     

       Экспериментальные кривые для потенциала зажигания таунсендовского разряда впервые были измерены Пашеном. Представим зависимости, полученные для различных газов (рис.2).

                  Рис.2

Данные кривые хорошо согласуются с формулой, выведенной для  Uз. Для значений в минимуме получаются следующие выражения:                    

                                

                 

Так, например, для воздуха при  А15 (смторр)-1, В365 В/смторр, =10-2, С=1,18:

                 (pd)min=0,83 торрсм,   (E/p)min=365 В/смторр,   Umin 300 В.

Значения  E/p в минимумах данных кривых Пашена соответствуют точке Столетова, где ионизационная способность электрона максимальна и равна:  

                 


e-

x

Ф

А

К

0

d

x

dx

10-1

100

101

102

103

pd,

смторр

102

103

104

Uз , В

воздух

H2

Ar

N2

He


 

А также другие работы, которые могут Вас заинтересовать

53241. Гражданская война 1918-1921 гг. – урок для XXI века 1.11 MB
  Однако наша Гражданская война была неразрывно связана с войной за независимость России войной против интервенции Запада. В ходе гражданской войны в России погибло несколько миллионов человек количественные оценки резко различаются. Гражданская война как война Февраля с Октябрем продолжение военными средствами противостояния между двумя революционными проектами России означавшими два разных...
53242. Брейн-ринг з елементами театралізації на тему «Стародавня Греція» 1.99 MB
  Про яку країну ми говоритимемо Стародавня Греція Якої мети ми повинні досягти Чого ви очікуєте від цього брейн рингу Завдання : назвати моря якими омивається Греція за кожну вірну назву І бал Середземне Егейське Іонічне Тірренське Завдання : Із міфа який вам будуть розповідати назвати дійових осіб. ВЕДУЧА: Чим же закінчилась ця історія Ш Завдання: Кожній команді слід за 3040 секунд розповісти кінець...
53243. Греция в XI-VI ст. до н.э 48.5 KB
  Развивать умения работать со схемами картами информационными текстами; делать самостоятельные суждения. методом рассказа учителя работа со схемой понятиями . Работа с картой. Рассказ учителя работа со схемой.
53244. Great Britain 94.5 KB
  This country is famous for its beautiful scenery: valleys, mountains, rivers. In the country there is the second highest mountain in Britain. In this country you can follow the narrow rocky paths in the Snowdonia National Park. What country is it? (Wales)
53245. РЕЛІГІЯ СТАРОДАВНЬОЇ ГРЕЦІЇ 32.5 KB
  Гестія богиня домашнього вогнища. Деметра богиня рильництва. Гера богиня заміжніх жінок. Арес бог війни Артеміда богиня полювання Афіна богиня мудрості Афродіта богиня кохання Аполлон бог сонця Піка богиня перемоги всіх богів записано на дошці і діти відмічають в зошиті Для того щоб зрозуміти як жили люди в давнину необхідно знати не тільки історичні події але й звички людей того часу їхні традиції релігію.
53246. Природа й населення Стародавньої Греції 84.5 KB
  Населення Давньої Греції та довколішніх земель. У різних містах Греції зустрілися у славетному храмі бога Аполлона в місті Дельори яке знаходиться поблизу південного схилу гори Парнас. Населення Давньої Греції та довколишніх земель.
53247. Викторина «Древняя Греция». 6 класс 62 KB
  Вспомните миф и назовите море. Назовите имя героини. Персефона Назовите сына критского мастера построившего лабиринт. Назовите героя.
53248. Греция в ІІ – первой половине І тыс. до н.э 62 KB
  Цели урока: познакомить учащихся с гомеровским периодом в истории Греции; рассмотреть произведения Гомера Одиссея Илиада и дать характеристику этим произведениям как литературным памятникам и историческим источникам; показать причины и направления греческой колонизации; формировать умения и навыки работы в группах со словарем и хронологической таблицей; повышать уровень культурного развития учащихся Ожидаемые результаты: после этого урока учащиеся смогут: называть время гомеровского периода и периода греческой колонизации в...
53249. Греко-перські війни 49.5 KB
  А Марафонська битва; Б Битва при Фермопілах; В Сала мінська битва; Г Остаточна перемога греків та її значення; Перший Афінський морський союз. А Марафонська битва; 13 вересня 490 до н. Марафонська битва 20000 персів та 11000 греків під керівництвом Мільтіада → перемога греків → марафонський біг 42 км. Б Битва при Фермопілах; 481 створено військовооборонний союз Спарти та Афін.