19225

ТЛЕЮЩИЙ РАЗРЯД

Лекция

Физика

ТЛЕЮЩИЙ РАЗРЯД Тлеющий разряд имеет свои принципиальные особенности по сравнению с другими видами газовых разрядов. Ввиду этого рассмотрим сравнительную вольтамперную характеристику основных газовых разрядов рис.1. Для получения данной экспериментально

Русский

2013-07-11

87.5 KB

8 чел.

ТЛЕЮЩИЙ РАЗРЯД

      Тлеющий разряд имеет свои принципиальные особенности по сравнению с другими видами газовых разрядов. Ввиду этого, рассмотрим сравнительную вольтамперную характеристику основных газовых разрядов (рис.1). Для получения данной экспериментальной зависимости использовался разряд в неоне при давлении 1 торр с медными электродами: расстояние между электродами 50 см, площадь поверхности электрода 10 см2. Наиболее слаботочная область (1) соответствует несамостоятельному разряду, когда для зажигания разряда требуется внешний ионизатор (УФ -излучение, электронный пучок и т.д.). Следующая область (2) принадлежит таунсендовскому самостоятельному разряду, в котором существуют механизм ионизации электронным ударом и процесс ион -электронной эмиссии на катоде. Заметим, что таунсендовский разряд не обладает свечением, т.е. считается темновым разрядом. При увеличении тока в области (3) таунсендовский разряд постепенно переходит в тлеющий разряд, что сопровождается падением напряжения на разряде. Область (4) соответствует нормальному тлеющему разряду, в котором разряд характеризуют светящиеся области, и процессы свойственные тлеющему разряду. Дальнейший рост тока в области (5) приводит к аномальному тлеющему разряду, в котором возникает нагрев катода и появление термоэмиссии, присущей дуговому разряду. В последующей области (6) напряжение на разряде резко уменьшается и разряд окончательно переходит в дуговой (7), который характеризует небольшое напряжение и дальнейший рост силы тока.

                                                                                                    Рис.1

 

                                                                               Рис.2

       Исследования тлеющего разряда, начатые в начале XIX века Фарадеем, были затем продолжены многими известными учеными. Модифицированный тлеющий разряд при уменьшении давления использовался затем в конце XIX века Рентгеном в его знаменитых экспериментах с катодными лучами. Традиционно тлеющие разряды создавались в стеклянных трубках на остаточном воздухе, либо при газовом заполнении при пониженном давлении (10-2-102 торр) (рис.2). Наибольшей светимостью, как правило, обладает положительный столб, который в зависимости от газа принимает различную окраску. Так, например, для воздуха цветовые тона фиолетово-розовые, для гелия – зеленые, для аргона и ртути – голубые, для неона – оранжево-желтые и т.д.  

      Свечение тлеющего разряда связано с наличием определенных областей, которым свойственны характерные процессы (рис.2). Ближайшим к катоду находится катодное свечение, которое в некоторых тлеющих разрядах обладает достаточной яркостью за счет процессов ионизации электронным ударом. Следующее за ним отрицательное свечение обычно более слабое по интенсивности и присутствует не у всех разрядов. Яркий для газоразрядных стеклянных трубок положительный столб обладает наибольшими размерами. Положительный столб характеризуются дрейфом заряженных частиц в электрическом поле и  процессами их диффузии. Анодное свечение, как правило, слабое и наблюдается редко. Области свечения разделяются темными пространствами (рис.2), в которых возбуждение и ионизация частиц незначительная.

         

   а)                                                                          б)

   в)                                                                           г)

                           Рис.3

       Рассмотрим характерные зависимости потенциала, напряженности электрического поля, плотности тока и концентрации заряженных частиц тлеющего разряда (рис.3). Зависимость для потенциала содержит характерный подъем в области катодного слоя с последующим медленным ростом в области положительного столба (рис.3а). Катодное падение потенциала  UК составляет около 2/3 всего приложенного напряжения к разряду и значительно превышает анодное  UА. Максимальная напряженность электрического поля (рис.3б) соответственно существует также в области катодного слоя. Плотности электронного и ионного токов достигают максимумов соответственно на аноде и на катоде соответственно (рис.3в). Электронная и ионная концентрации имеют сложные зависимости и приблизительно одинаковы в области положительного столба (рис.3г).

       Рассмотрим теоретическое описание процессов области близлежащей к катоду – катодного слоя. Данную область характеризуют сильный рост потенциала и соответственно высокие значения напряженности электрического поля (рис.3 а,б). В катодном слое доминирующими считаются процессы ионизации и дрейфового движения в электрическом поле. Процессами диффузии и рекомбинации обычно пренебрегают, т.е. считают их незначительными. Выражения для плотностей токов представляются в виде:                                            

                                                                

              

Граничные условия для значений плотностей токов на катоде и аноде записываются следующим образом:

                                           

Поэтому выражения переписываются в форме:

                   

       В результате плотности электронного и ионного токов имеют вид:

                   

Полученные формулы передают характерные моменты экспериментальных зависимостей изображенных на рис.3 а,б.    

        Рассмотрим вывод выражения для напряженности электрического поля в катодном слое с учетом пространственных зарядов. Уравнение Пуассона в одномерном случае записывается с учетом зависимостей для концентраций заряженных частиц (рис.3г) следующим образом:    

                                                                             

                              

                    

После интегрирования последнего уравнения получается следующее выражение для напряженности электрического поля:

                                       

Полученная формула передает основную тенденцию зависимости (рис.3б), которая содержит резкий спад в области катодного слоя.

                                                 

        

                       

       К неустойчивостям тлеющего разряда следует отнести: 1) ионизационно-перегревную неустойчивость, 2) контракцию (шнурование) разряда, 3) страты. Ионизационно-перегревная неустойчивость наблюдается в некоторых видах сильноточных тлеющих разрядов. Контракция (шнурование) разряда имеет место также при достаточно сильных для тлеющих разрядов токах. При контракции происходит сжатие или уменьшение диаметра плазменного шнура аналогичное пинч-эффекту.

       При определенных условиях положительный столб тлеющего разряда разделяется на светящиеся полосы, разделенные темными промежутками, т.е. происходит образование страт. Экспериментально было установлено, что для страт выполняются следующие соотношения:

   1)  

   2)  

   3)  

Где l0 -расстояние между соседними стратами, p -газовое давление, r -радиус плазменного столба, B -внешнее магнитное давление. Расстояние между соседними стратами (l0) при этом остается неименным. Для объяснения образования страт были предложены теории, учитывающие ступенчатый характер ионизации газа положительного столба электронами.


7

3

1

6

5

4

200

400

600

10-11

10-10

10-5

10-4

10-1

1

10

I, A

U, В

К

А

-

+

Свечения:

катодное

положительный столб

отрицательное

анодное

Темные пространства:

астоново

катодное

фарадеево

анодное

UА

UК

x

d

d

x

x

j

d

je

j+

n+

ne

ne

n+

nen+

n

d

x


 

А также другие работы, которые могут Вас заинтересовать

81482. Холестерин как предшественник ряда других стероидов. Представление о биосинтезе холестерина. Написать ход реакций до образования мевалоновой кислоты. Роль гидроксиметилглутарил-КоА-редуктазы 165.9 KB
  В печени синтезируется более 50 холестерола в тонком кишечнике 15 20 остальной холестерол синтезируется в коже коре надпочечников половых железах. В сутки в организме синтезируется около 1 г холестерола; с пищей поступает 300500 мг Холестерол выполняет много функций: входит в состав всех мембран клеток и влияет на их свойства служит исходным субстратом в синтезе жёлчных кислот и стероидных гормонов. Предшественники в метаболическом пути синтеза холестерола превращаются также в убихинон компонент дыхательной цепи и долихол...
81483. Синтез желчных кислот из холестерина. Конъюгация желчных кислот, первичные и вторичные желчные кислоты. Выведение желчных кислот и холестерина из организма 104.99 KB
  Конъюгация желчных кислот первичные и вторичные желчные кислоты. Выведение желчных кислот и холестерина из организма. Жёлчные кислоты синтезируются в печени из холестерола.
81484. ЛПНП и ЛПВП - транспортные, формы холестерина в крови, роль в обмене холестерина. Гиперхолестеринемия. Биохимические основы развития атеросклероза 110.43 KB
  Содержание холестерола и его эфиров в ЛППП достигает 45; часть этих липопротеинов захватывается клетками печени через рецепторы ЛПНП которые взаимодействуют и с апоЕ и с апоВ100. Транспорт холестерола в составе ЛПНП. Рецепторы ЛПНП. На ЛППП оставшиеся в крови продолжает действовать ЛПлипаза и они превращаются в ЛПНП содержащие до 55 холестерола и его эфиров.
81485. Механизм возникновения желчнокаменной болезни (холестериновые камни). Применение хенодезокеихолевой кислоты для лечения желчнокаменной болезни 103 KB
  Выделение холестерола в жёлчь должно сопровождаться пропорциональным выделением жёлчных кислот и фосфолипидов удерживающих гидрофобные молекулы холестерола в жёлчи в мицеллярном состоянии У большинства больных желчнокаменной болезнью активность ГМГКоАредуктазы повышена следовательно увеличен синтез холестерола а активность 7αгидроксилазы участвующей в синтезе жёлчных кислот снижена. В результате синтез холестерола увеличен а синтез жёлчных кислот из него замедлен что приводит к диспропорции количества холестерола и жёлчных кислот...
81486. Общая схема источников и путей расходования аминокислот в тканях. Динамическое состояние белков в организме 134.22 KB
  Значение аминокислот для организма в первую очередь определяется тем что они используются для синтеза белков метаболизм которых занимает особое место в процессах обмена веществ между организмом и внешней средой. Аминокислоты непосредственно участвуют в биосинтезе не только белков но и большого количества других биологически активных соединений регулирующих процессы обмена веществ в организме таких как нейромедиаторы и гормоны производные аминокислот. Аминокислоты служат донорами азота при синтезе всех азотсодержащих небелковых...
81487. Переваривание белков. Протеиназы - пепсин, трипсин, химотрипсин; проферменты протеиназ и механизмы их превращения в ферменты. Субстратная специфичность протеиназ. Экзопептидазы и эндопептидазы 110.2 KB
  Подавляющее их количество входит в состав белков которые гидролизуются в ЖКТ под действием ферментов протеаз пептидщцролаз. Под действием всех протеаз ЖКТ белки пищи распадаются на отдельные аминокислоты которые затем поступают в клетки тканей. Источником Н является Н2СО3 которая образуется в обкладочных клетках желудка из СО2 диффундирующего из крови и Н2О под действием фермента карбоангидразы карбонатдегидратазы: Н2О СО2 → Н2СО3 → НСО3 H Диссоциация Н2СО3 приводит к образованию бикарбоната который с участием специальных...
81488. Диагностическое значение биохимического анализа желудочного и дуоденального сока. Дать краткую характеристику состава этих соков 109.1 KB
  Анализ желудочного сока является очень важным методом исследования больных с заболеваниями желудка кишечника печени желчного пузыря крови и пр Составная часть Единицы СИ Азот: небелковый 143 343 ммоль л мочевины и аммиака 499 999 ммоль л аминокислот 143 57 ммоль л Хлориды 1551 ммоль л Свободная хлористоводородная кислота 20 ммоль л Мочевая кислота 476 1189 мкмоль л Калий 56 353 мэкв л ммоль л Натрий 313 1893 мэкв л ммоль л Общая кислотность 4060 ммоль л Свободная соляная кислота 2040 ммоль л Связанная соляная кислота...
81489. Протеиназы поджелудочной железы и панкреатиты. Применение ингибиторов протеиназ для лечения панкреатитов 115.09 KB
  Протеолитические ферменты трипсин химотрипсин эластаза карбоксипептидазы А и В выделяются панкреацитами в неактивном состоянии что предотвращает самопереваривание клеток. Трипсин. Трипсиноген и трипсин получены в кристаллическом виде полностью расшифрована их первичная структура и известен молекулярный механизм превращения профермента в активный фермент. В опытах in vitro превращение трипсиногена в трипсинкатализируют не только энтеропептидаза и сам трипсин но и другие протеиназы и ионы Са2.
81490. Трансаминирование: аминотрансферазы; коферментная функция витамина В6. Специфичность аминотрансфераз 144.39 KB
  Из реакции переноса NH2 наиболее важны реакции трансаминирования . 346 относится к альдиминам или шиффовым основаниям во время реакции аминокислота 1 вытесняет остаток лизина и образуется новый альдимин 2. На второй частиреакции те же стадии протекают в противоположном направлении: пиридоксаминфосфат и вторая 2кетокислота образуют кетимин который иэомеризуется в альдимин. Механизм реакции трансаминирования открыт в 1937 году советскими учеными А.