19226

ПОЛОЖИТЕЛЬНЫЙ СТОЛБ ТЛЕЮЩЕГО РАЗРЯДА

Лекция

Физика

Положительный столб тлеющего разрядА Тлеющий разряд открытый еще в XIX веке стал детально исследоваться с появлением основных соотношений физики плазмы для различных процессов свойственных газовым разрядам. К наиболее важным областям разряда наряду с катодной обл

Русский

2013-07-11

111.5 KB

8 чел.

Положительный столб тлеющего разрядА

Тлеющий разряд, открытый еще в XIX веке, стал детально исследоваться с появлением основных соотношений физики плазмы для различных процессов, свойственных газовым разрядам. К наиболее важным областям разряда наряду с катодной областью, где происходит основная ионизация нейтральных частиц, следует также отнести положительный столб, имеющий наибольшую протяженность. При создании тлеющего разряда в стеклянных трубках, положительный столб, как и катодная область, обладает значительным свечением. С помощью различных газов можно получить разнообразную цветовую окраску тлеющего разряда. Положительный столб тлеющего разряда нашел практическое применение не только в ряде осветительных устройств, но и в качестве рабочей (инверсной) среды для газовых лазеров.

Рассмотрим основные процессы, характерные для положительного столба (1) тлеющего разряда (рис.1а). Ход потенциала и напряженности электрического поля вдоль оси тлеющего разряда представлен на рис.1 б,в. Для распределения потенциала в области положительного столба  типичен слабый рост, а для напряженности поля  E  практически постоянное значение. С электротехнической точки зрения положительный столб замыкает катодную область (2) на анод.

                                                                  

                                                          а)

                                                          б)

                                                                 в)

                                       Рис.1                                                                                   

                                                      

                                                                                                                                                                                                                   

Меньшее значение напряженности электрического поля в положительном столбе свидетельствует о более слабых процессах ионизации по сравнению с катодной областью (2), из которой поступает большинство электронов (рис.1а). Ввиду этого, данные заряженные частицы в положительном столбе будут участвовать в дрейфовом движении вдоль оси разряда. Другими процессами в положительном столбе будет являться диффузионное движение заряженных частиц и рекомбинация в объеме разряда и на стенках камеры.

Рассмотрим диффузионное движение в положительном столбе. Предположим, что радиальный диффузионный поток электронов направлен к стеклянной стенке камеры (3) (рис.1а). Тогда произойдет накопление электронов на данной внутренней поверхности камеры и она приобретет отрицательный заряд. Этот процесс вызовет искажение эквипотенциалей электрического поля (рис.2), которые первоначально располагаются почти эквидистантно и перпендикулярно оси разряда. Данная форма эквипотенциалей вызовет появление радиальной составляющей электрического поля, и соответственно притяжение ионов к стенкам камеры. В результате на стенке будет происходить нейтрализация ионов. Данный диффузионный процесс, связанный с движением отрицательных и положительных частиц, является амбиполярной диффузией.

                                                                                            Рис.2

Данные процессы в положительном столбе входят в общее уравнение, которое записывается в виде:

                                     

Где  n – концентрация плазмы, - коэффициент амбиполярной диффузии, а величина  q – характеризует процессы ионизации и объемной рекомбинации.

Для стационарного условия (), при учете радиального диффузионного движения данное уравнение записывается следующим образом:                                      

                  

Где - поперечная часть лапласиана, – коэффициент ионизации электронами, - коэффициент рекомбинации. Ввиду того, что данное уравнение имеет достаточного сложный вид, существуют решения для более простых случаев. Например, рассматривается случай диффузионного движения вдоль оси разряда или вдоль его радиуса. Слагаемым,  описывающим рекомбинацию, при этом пренебрегают.                        

 Рассмотрим уравнения для осевого движения. Предположим, что длина свободного пробега электрона значительно меньше радиуса разрядной трубки и средние тепловые скорости электронов и ионов равны  ve = vi = v. Запишем уравнения для ионов и электронов:

                       

                      

Где   - тепловые скорости ионов и электронов, Di , De – их коэффициенты диффузии, и , - их подвижности. Для случая квазинейтральной плазмы  ni  = ne = n  средняя скорость выразится в виде:

                      

Для диффузионного потока частиц можно записать следующее равенство:

                      

В результате для коэффициента амбиполярной диффузии можно записать следующую формулу:

                      

В данное выражение входят коэффициенты диффузии и подвижности электронов и ионов.

  Рассмотрим уравнение для диффузионного движения в радиальном направлении. Запишем выражение для числа электронов N, диффундирующих через цилиндрическую поверхность радиуса  r  в единицу времени:

                    

На поверхности  радиуса  r + dr  уравнение запишется в виде:

                    

Скорость убыли ионов, ввиду диффузии в этом объеме будет равна:

                    

                    

Данное уравнение аналогично уравнению для радиального течения тепла в цилиндре. Для поддержания проводимости в плазме скорость убыли ионов  должна быть равна скорости образования ионов при ионизации электронами:

                   

Где  - коэффициент ионизации электронами. Тогда уравнение для радиальной диффузии примет вид:

                  

Или при введении обозначения  :

                  

После интегрирования данного уравнения, решение записывается в виде функции Бесселя нулевого порядка:

                          

Где  n0  - концентрация на оси установки.

                        

      Рассмотрим вопрос, связанный с переходом к тлеющему разряду от других видов разрядов. Представим достаточно типичную вольтамперную характеристику данных разрядов (рис.3). Более слаботочным относительно тлеющего разряда является таунсендовский (темновой) разряд. При увеличении тока разряда (участок  АВ) за счет увеличения э.д.с. источника питания    или за счет уменьшения сопротивления нагрузки  R  напряжение на разряде падает и разряд переходит к нормальному тлеющему разряду (участок BC). Нормальный тлеющий разряд характеризует постоянный участок напряжения при возможности изменения тока через разряд. При этом специфической особенностью разряда является факт, что плотность тока на катоде остается неизменной, а увеличение тока происходит за счет увеличения площади, которую разряд занимает на катоде.

                     

                                                                                    Рис.3

В какой-то момент разряд занимает всю площадь катода (точка С) и тлеющий разряд переходит в аномальную стадию (участок  CD). При увеличении тока начинает расти и плотность тока, что постепенно меняет характер процессов на катоде. При разогреве катода на нем начинает преобладать термоэлектронная эмиссия и после максимума зависимости (точка D) начинается переход к дуговому разряду (участок DE). Дуговой разряд обычно зажигается при тока порядка   I~1 А, что происходит на участке EF.

Нормальная и аномальная стадия тлеющего разрядов представлена на рис.4.  Данный разряд был осуществлен в неоне при пониженном давлении и при использовании медных электродов (эл = 9,3 см, d=1,6 см).

                Рис.4

Можно обратить внимание, что наилучший вид нормального разряда присутствует при давлении  p=15 торр, а с уменьшением давления участок нормального разряда уменьшается.


3

2

1

+

А

UА

UК

x

d

d

x

+

C

A

F

E

D

B

/R

I

U

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

I, A

0

0,4

0,8

1,2

U,

кВ

p=15 торр

p=0,44 торр

p=0,43 торр

нормальный

аномальный


 

А также другие работы, которые могут Вас заинтересовать

77304. ACTIVITY THEORY IN PRACTICE OF DESIGN AND DEVELOPMENT OF HUMAN-COMPUTER INTERFACES 431 KB
  The paper is devoted to the design and development of “mass” and “professional” interfaces. The approach based on Activity Theory is considered. The example of the system with the interface based on Activity Theory approach is described.
77305. Анализ подходов к отладке параллельных вычислений 19 KB
  Фактически единственным способом является поочередное подсвечивание строчек создающее иллюзию выполнения программы перед глазами пользователя. Выполнение программы отождествляется с ее исходным текстом вообще говоря статическим. Попытки же напрямую исследовать динамику выявляют огромную сложность рассмотрения реальной программы и в основном ограничиваются небольшими фрагментами кода. Кроме того выполнение программы как последовательность операторов довольно плохо поддается визуализации.
77307. ФЕНОМЕН «ПРИСУТСТВИЯ» В ВИРТУАЛЬНОЙ РЕАЛЬНОСТИ В КОНТЕКСТЕ ИНТЕЛЛЕКТУАЛЬНОЙ ДЕЯТЕЛЬНОСТИ ЧЕЛОВЕКА 32.5 KB
  В статье рассматриваются вопросы применения технологии виртуальной реальности в образовании. Приводится определяющее термин виртуальная реальность понятие «присутствия» и показывается его влияние на интеллектуальную деятельность, что представляет большое значение для образовательного процесса с использованием сред виртуальной реальности.
77308. Psychological Aspects of Virtual Environment Use 33.5 KB
  Phenomen of presence nd immersion in to virtul environments re subject of psychology studies t the sme time they re extremely importnt from positions of computer visuliztion. Keywords: Presence virtul relity visuliztion. INTRODUCTION The presence phenomenon ws described s perceptionl illusion of immedicy or otherwise ldquo;sense of being thererdquo; ignoring the computer s intermediry between person nd the world it intercts with. The sme wy one cn describe involvement phenomenon tht s well s immersion is defined s component of...
77309. СОВРЕМЕННЫЕ ТЕНДЕНЦИИ В РАЗРАБОТКЕ СРЕДСТВ ВИЗУАЛИЗАЦИИ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ ПАРАЛЛЕЛЬНЫХ ВЫЧИСЛЕНИЙ 33 KB
  Схема функционирования разрабатываемых в последние годы систем отладки примерно следующая в ходе вычислений собираются данные о работе процессов которые являются входными при построении того или иного вида отображения например графов вызовов или графов потоков данных. Однако все эти приемы скорее носят характер паллиативов изза возникающих проблем с реализацией как самого процесса вывода данных так и с интерфейсом удобным для программиста. В этой связи можно рассмотреть методику и среду распределенного и параллельного...
77310. ИССЛЕДОВАНИЕ ПОЛЬЗОВАТЕЛЕЙ СРЕДЫ ВИРТУАЛЬНОЙ РЕАЛЬНОСТИ 29.5 KB
  В этой связи можно рассмотреть историю развития средств интерактивной машинной графики предназначенных для обеспечения интерпретации данных и отметить увеличение ldquo;плотностиrdquo; при передаче информации от порядка тысячи элементарных векторов на экране до генерации в реальном времени практически полноценных фотореалистичных фильмов. Это состояние характеризуется как ощущение пребывания в ldquo;другом миреrdquo; в отличие от обычного для компьютерной графики...
77311. Психологические феномены виртуальной реальности 29 KB
  Ниже даются определения основных состояний переживаемых в виртуальной реальности показана их связь и взаимодействие что представляется важным как для дальнейших исследований так и для разработки систем компьютерной визуализации использующих среды виртуальной реальности. Среды виртуальной реальности являются развитием симуляторов и тренажеров созданных еще в 60ые и 70ые годы XX столетия для летчиков и космонавтов. Одновременно с феноменом присутствия описывается феномен погружения как явление когда органы чувств пользователя...
77312. MODERN TENDENCIES IN THE DEVELOPMENT OF VISUALIZATION TOOLS FOR PARALLEL COMPUTING SOFTWARE 25 KB
  Urosov s fr s one cn see it is nturlly to use visuliztion tools both for needs of prllel progrmming nd presenttion of redymde prllel softwre. In the mid 90s of the 20th century mny systems for softwre visuliztion of prllel computing hve been developed. Judging by our observtions lst yers the intensity of development in the field of Softwre Visuliztion declined considerbly.