19230

ВЫСОКОЧАСТОТНЫЕ (ВЧ) РАЗРЯДЫ

Лекция

Физика

Высокочастотные ВЧ разряды Высокочастотные разряды ВЧ являются самыми универсальными и удобными с практической точки зрения разрядами т.к. для их создания в большинстве случаев не требуется электродов а они могут зажигаться либо в атмосфере либо в камере при пон

Русский

2013-07-11

138.5 KB

28 чел.

Высокочастотные (ВЧ) разряды

Высокочастотные разряды (ВЧ) являются самыми универсальными и удобными с практической точки зрения разрядами, т.к. для их создания в большинстве случаев не требуется электродов, а они могут зажигаться либо в атмосфере, либо в камере при пониженном давлении. При создании ВЧ-разрядов при использовании потоков газов могут быть получены плазмотроны, нашедшие ряд технологических применений в металлургии и плазмохимии. Исследования ВЧ-разрядов были начаты в конце XIX века ввиду создания высоковольтных трансформаторов: катушки Румкорфа, а затем генератора Тесла. В экспериментах Тесла впервые были получены искровые разряды длиной до нескольких метров при атмосферном давлении. В начале XX века Томсоном были исследованы различные ВЧ-разряды при пониженном давлении и возбуждении их с помощью индукционных катушек. Также были открыты другие разновидности ВЧ-разрядов, как, например, факельный разряд.  

       Для ВЧ-разрядов существуют следующие способы возбуждения: 1) емкостной при частотах менее 10 кГц, 2) индукционный при частотах в диапазоне 100 кГц – 100 Мгц. Данные способы возбуждения подразумевают использование генераторов данных диапазонов. При емкостном способе возбуждения электроды могут быть установлены внутри рабочей камеры или снаружи, если камера изготовлена из диэлектрика (рис.1 а,б). Для индукционного способа применяются специальные катушки, количество витков которых зависит от используемой частоты (рис.1 в).

         

  Рис.1                  а)                                б)                              в)         

 

       Рассмотрим основные закономерности емкостного пробоя на примере разряда с внешней установкой электродов. Разряд зажигался в трубке, заполненной неоном длиной 30 см и диаметром 2 см. Частота генератора находилась в диапазоне  2 МГц – 15 МГц.

                                      Рис.2

                                                                                       

Зависимость напряжения пробоя  Uз  от давления газа в камере представлена на рис.2. В отличии от пробоя по Пашену для таунсендовского разряда в данных зависимостях не присутствует расстояние между электродами. При фиксированной частоте генератора определяющим параметром является давление. С увеличением частоты генератора зависимости располагаются ниже.

       Для анализа механизма ВЧ -пробоя вводится наиболее важная сравнительная характеристика для данных видов разрядов – соотношение частоты столкновений заряженных частиц (электронов и протонов) и частоты внешнего электрического поля генератора. Наиболее важными случаями являются следующие: 1) частота генератора значительно превышает частоту столкновений (), 2) частота генератора значительно меньше частоты столкновений  (). Случай приблизительно равных значений частоты столкновения и частоты генератора является более сложным вариантом, т.к. нельзя сказать какой механизм будет доминировать.

       Представим расположение плазменных областей ВЧ-разряда на примере емкостного разряда с электродами, установленными внутри камеры (рис.3). Считается, что внешнее электрическое поле, созданное генератором синусоидальное . Допустим, что частота столкновений значительно превышает частоту возбуждающего генератора (). Тогда движение электронов в данном разряде будет сводится к дрейфовому движению со скоростью:

                          

Амплитуда смещения электронов имеет вид:               

                  

               

           Рис.3

                                                                                                                                                                                                                                                                                                                                              

При  p =10 тор,  =8,5107 с-1, E/p =10 В/смторр, значение  смещения составляет А=0,1 см. Для оценки дебаевского радиуса в случае данного разряда получается значение:

              rД =0,05 см,  при  n=108 см-3 и  Т=1 эВ     

За время меньше периода колебаний генератора (t<T) изобразим расположение областей плазмы и график зависимостей напряженности электрического поля и потенциала (рис.3). Центральное местоположение между электродами будет занимать плазменная область с квазинейтральным параметром . Области сопредельные с электродами будут характеризоваться ростом напряженности и потенциала электрического поля.          Полный ток, текущий через разряд содержит ток заряженных частиц и ток смещения:

          

В большинстве случаев ток частиц в ВЧ -разрядах превосходит ток смещения (j1 > jсм ).

       Рассмотрим вольтамперную характеристику (ВАХ) емкостного ВЧ разряда (рис.4) на примере разряда между электродами, установленными в камере (диаметр 10 см, расстояние 1-10 см). Частота генератора составляла 14 МГц, использовался остаточный воздух, гелий и углекислый газ. Характерным для данных зависимостей является наличие почти постоянных участков, где увеличение тока, происходит при практически постоянном напряжении.

                                                  Рис.4

                                                                                                                                                                 

                             

        При построении теории ВЧ -разряда достаточно трудным моментом является создание универсальной теории для всех разновидностей данных разрядов. Рассмотрим основные закономерности, связанные с движением электронов. Можно выделить два основных момента в зависимости от соотношения между частотой генератора и частотой электрон-ионных столкновений.

1) Первый случай соответствует условию, когда внешняя частота значительно превосходит частоту столкновений (). Давление газа при этом считается достаточно малым. Для движения электрона в отсутствии столкновений записывается уравнение движения:

              

Решение уравнения имеет вид:

              

Обычно полагают С2=0 и  в момент появления электрона. Полученное решение соответствует гармоническому и поступательному движению электрона во внешнем электрическом поле в промежутках между столкновениями с атомами и ионами.

2) Второй случай соответствует значительному превышению частоты столкновений над внешней частотой (). Давление газа P и частота поля  таковы, что за время менее периода  t<<T  благодаря большому числу столкновений устанавливается дрейф электронов. Скорость дрейфа электронов имеет выражение:

               

3) Более сложным является случай примерного равенства данных частот, т.е. частоты генератора и частоты столкновений электронов (). В данном варианте трудно сказать, какой из двух механизмов будет доминирующим.                        

       Приведем результаты теории ВЧ -разряда, построенной Хейлом для случая низких давлений газа и превышения частоты генератора над частотой столкновения  (). Предполагается, что пробой газа происходит, когда энергия электрона в конце свободного пробега равна энергии ионизации частиц газа, т.е. .  В качестве исходных выражений записываются два трансцендентных уравнения:  

               

        – длина ионизации электрона, – энергия ионизации атома, - момент появления свободного электрона, t – момент первого соударения электрона с частицей газа

Амплитуда напряженности внешнего электрического поля E0 будет наименьшей при  или , т.е. когда  E=0. Окончательный вид системы данных уравнений следующий:

               

В рамках данной теории были получены зависимости напряжения зажигания разряда от частоты генератора, которые нашли хорошее соответствие с экспериментальными распределениями.                                       

                      

      Разновидностью ВЧ -разрядов, происходящих при частотах порядка гигагерц (1 Гц) являются СВЧ -разряды, имеющие свои специфические особенности. Для создания СВЧ -разрядов электромагнитная энергия от генератора передается в камеру по волноводу, либо фокусируется в области разряда.

       Для описания пробойных явлений обычно записывается уравнение, характеризующее основные процессы: ионизацию электронным ударом, а также прилипание и диффузию электронов:

             

     D -коэффициент диффузии электронов, -частота ионизации, -частота прилипания

Образование электронных лавин описывается с помощью уравнения:

              

                  

        - частота диффузии, - длина диффузии,  - количество затравочных

          электронов,   -постоянная времени лавины              

Для стационарного случая имеет место равенство частоты ионизации и суммы частот диффузии и прилипания.

              

                                               Рис.5

                                                                                                                                                                          

      Приведем зависимости напряжения электрического поля, при которой происходит пробой газа от давления газа (рис.5) для воздуха и гелия. Примечательным является вид данных зависимостей, содержащих минимум, как, например, и кривые Пашена для пробоя в случае тлеющего разряда.

~

~

~

2

4

6

8

10

400

800

1200

1600

p, торр 

Uз , В

1

2

3

1) =15 МГц

2) =3 МГц

3) =2,4 МГц

+

+

x

электроды

плазма

x

E

d

x

d

1

2

3

0

300

500

I, A

U, B

   14 МГц

1) воздух p=7,5 торр

2) СО2  p=15 торр

3) воздух  p=30 торр

4) He  p=30 торр

1

2

3

4

10-1

100

101

102

103

p, торр

102

103

104

E, В/см

1) He (+Hg) =10 ГГц

2) воздух  =9,4 ГГц

1

2


 

А также другие работы, которые могут Вас заинтересовать

49138. МИКРОПРОЦЕССОРНАЯ СИСТЕМА УПРАВЛЕНИЯ 755.5 KB
  Конечный датчик служит для сигнализации системе о том, что она максимально переместилась от нулевого положения или находится в нулевом положении. В качестве конечного датчика можно выбрать реле (такие как поляризованные, герметизированные и их виды: шариковые, плунжерные и т.д.) В данной системе требуется один конечный датчик (датчик нулевой позиции)
49139. Трехзвенный Г-образный фильтр верхних частот 667 KB
  Переходная харатеристика Техническое задание Электрическая принципиальная схема Задание: Расчет АЧХ ФЧХ и переходной характеристики трехзвенного Гобразного фильтра. Расчет Рис.
49140. Полосовой фильтр 24.46 MB
  Получить Амплетудно–Частотную, Фаза –Частотную характеристики, переходную характеристику и построить их графики Задание Расчет стационарных характеристик цепи Таблицы и графики АЧХ и ФЧХ...
49141. ИСПОЛЬЗОВАНИЕ АКУСТООПТИЧЕСКОГО ЭФФЕКТА ДЛЯ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ВЕЛИЧИН 2.4 MB
  Широкий спектр применения акустооптических приборов возможен благодаря многогранности акустооптического эффекта с помощью которого можно эффективно манипулировать всеми параметрами оптической волны. Усиление слабых акустических волн а также их генерация под действием мощной оптической волны фото-акустические или опто-акустические явления. Под воздействием мощной волны ультразвука в жидкости может наблюдаться в свою очередь генерация оптической волны так называемая соно-люминесценция. Для плоской монохроматической акустической волны...
49143. Инфракрасная спектроскопия и метрологическое обеспечение 1.17 MB
  Содержание пояснительной записки курсовой работы проекта: Инфракрасная спектроскопия Икспектры поглощения органических соединений Инфракрасное излучение и колебания молекул Гармонические и ангармонические колебания Колебания многоатомных молекул Оборудование для инфракрасной спектроскопии Основные области инфракрасного спектра Инфракрасный спектр Характеристические частоты групп 4. Нефедов...
49144. ФИНАНСЫ ОРГАНИЗАЦИЙ. МЕТОДИЧЕСКИЕ УКАЗАНИЯ 611 KB
  Теоретические методические и нормативно-правовые аспекты изучения оборотных средств организации предприятия Сущность состав и классификация оборотных средств предприятия Обзор нормативно-правовой базы в сфере учета и анализа оборотных средств Аналитический обзор состояния оборотных средств российских предприятий...
49145. IDEF–моделирование мандатного (полномочного) разграничения доступа 763.5 KB
  Суть ее такова что в СЗИ вводятся уровни безопасности или иначе уровни секретности. Работники с самым высоким уровнем безопасности могут работать с документами самой высокой степени секретности. В любой компьютерной системе которая предоставляется для множества пользователей необходимо тщательно продумать политику безопасности для обеспечения трех основных концепций защиты информации: конфиденциальность информации целостность информации доступность информации; Основу для установки анализа и применения политик безопасности в...