19231

ИСТОЧНИКИ ИОНОВ

Лекция

Физика

ИСТОЧНИКИ ИОНОВ Газоразрядные источники ионов нашли большое применение для создания приборов и устройств в научных экспериментах и технологических процессах. Ионные источники широко используются в работах по управляемому термоядерному синтезу и на совре...

Русский

2013-07-11

87.5 KB

11 чел.

ИСТОЧНИКИ ИОНОВ

       Газоразрядные источники ионов нашли большое применение для создания приборов и устройств в научных экспериментах и технологических процессах. Ионные источники широко используются в работах по управляемому термоядерному синтезу и на современных ускорителях. Высокочастотные и дуговые плазмотроны применяются в плазмохимии, для резки металлов и напыления различных элементов. Плазменные и электростатические ускорители, как источники реактивной тяги были установлены в качестве корректирующих двигателей на ряде спутников.                                  

      В качестве исходной среды плазмотроны содержат низкотемпературную плазму, из которой происходит извлечение ионов (рис.1). К одной из границ плазмы  S1 примыкает электродная система, состоящая из электродов  S2 и  S3. Потенциалы, которые подаются на данные электроды, обеспечивают извлечение и последующее ускорение ионов.

         

                                                                                          

                                                                                Рис.1

                                                                                                                                  

      В качестве устройства рассмотрим схему и параметры плазматрона, нашедшего применение в плазменных экспериментах и в качестве источника ионов на ускорителях заряженных частиц (рис.2). Основными частями плазматрона являются: 1- катод, 2- промежуточный электрод, 3-анод, 4-извлекающий электрод. Катод изготовляется из вольфрамовой нити, а отверстия в промежуточном электроде и в аноде составляют п5 мм и А 1,5 мм соответственно.                  

 

                                       Рис.2

                                                                                                        

Потенциалы, подаваемые на все электроды, указаны на рис.2. К промежуточному электроду подводится водяное охлаждение. Давление водорода в межэлектродном пространстве поддерживается на уровне  10-2 торр. В области отверстия промежуточного электрода (2) располагается ярко светящаяся плазменная сфера, окруженная двойным слоем (5), который представляет собой область интенсивной ионизации. Сферичность двойного слоя приводит к фокусировке электронов, ускоренных в двойном слое. Следует заметить, что при потребляемой мощности в 70 Вт и расходе газа в 25 см3/ч плазмотрон выдает пучок протонов с энергией около 60 кэВ и током 7,5 мА.          

      В качестве более совершенной системы, относительно плазматрона, в ряде случаев используется дуоплазматрон. Существенным отличием дуоплазматрона является создание достаточно сильного магнитного поля с помощью постоянных магнитов диапазона 0,5-10 кЭ в области двойного слоя и между промежуточным электродом и анодом (рис.2). В дуоплазматроне сжатие плазмы благодаря фокусирующей системе сочетается с действием неоднородного магнитного поля. В результате в дуоплазматронах достигается при большой вкладываемой мощности большая сила тока в пучке – до 0,5-1 А.                                                                                                           

      Плазма ВЧ -разряда в ряде случаев находит технологическое применение, как, например, в ВЧ -плазматронах (рис.3). Данное устройство позволяет получить направленный поток плазмы с температурой достигающей 10000 К. В данных плазматронах, как правило, используется индукционное возбуждение (рис.3), а мощность генераторов для различного типа устройств находится в диапазоне P=1 кВт-1 МВт при частотах в интервале f=1-15 МГц. В ряде случаев ввиду большой мощности требуется водяное охлаждение устройства. Корпус плазматрона составляет керамическая труба (2), в который вдувается через сопла (3) рабочий газ: воздух, аргон, кислород, азот и т.д. Обычно высокочастотная плазма образуется в области расположения индуктора (1), но в силу наличия потока газа плазменный шнур (4) приобретает вытянутую и заостренную форму (рис.3). Весьма эффективной является вихревая стабилизация газового потока (рис.3), при которой газ вдувается под углом к оси плазматрона.

                                              Рис.3

                                                                                                                                                                                                                 

      Рассмотрим распределение температуры в ВЧ –плазматроне (рис.4). Измерения температуры в данном примере проводились методом относительных интенсивностей спектральных линий. Индуктор (1) расположен вокруг керамической трубки (2) (внутренний диаметр 3 см), в которой создается плазма (3). В качестве рабочего газа использовался аргон при расходе газа 15 л/мин. Мощность генератора составляла 2,5 кВт при рабочей частоте 25 МГц. Внутренние области плазмы имеют торообразную форму и обладают максимальной температурой  t92000 при соответствующей проводимости 29 Ом--1см-1.

         

                                                         Рис.4

                                                                                                               

      ВЧ –плазмотроны применяются в следующих областях: 1) плазмохимия, 2) резка металлов, 3) обработка порошковых материалов. Рассмотрим устройство ВЧ –плазматрона, используемого для резки металлов и термообработки поверхностей (рис.5). Для сужения плазменной струи (1) в данной конструкции используется сопловая насадка (2) из тугоплавкого металла, имеющая водяное охлаждение (3). Частота генератора в данном примере составляла 1,8 МГц, при расходе газа в 40-150 л/мин, и скорости газовой струи (4) (воздух, кислород)  40-190 м/c. Вся конструкция находится внутри керамической трубы (5), вокруг которой расположен индуктор генератора (6). В результате применения насадки плотность потока плазмы увеличивается с 400 Вт/см2 до 4000 Вт/см2, что позволяет проводить эффективные технологические операции по резке металлов.

                                              Рис.5

                                                                                                    

                                                    

      Достаточно известным плазменным ускорителем, обладающим некоторыми рекордными параметрами является рельсотрон. Представим схематическое устройство рельсотрона (рис.6). Основу устройства составляют две металлические пластины (1) – “рельсы”, закрепленные на фиксированном расстоянии, между которыми на одном торце вставляется пластинка из диэлектрика (2) или тонкая металлическая фольга. При использовании рельсотрона как инжектора плазмы вся конструкция располагается в вакуумной камере. В ряде случаев эксперименты с рельсотронами проводятся при атмосферном давлении. К пластинам (1) рельсотрона подключается генератор тока (4), в качестве которого в различных системах используются: конденсаторные накопители, униполярные генераторы и т.д. Прохождение сильного тока вызывает испарение диэлектрика или взрыв фольги (2) и образование плазменной оболочки (3),  которая под действием силы Ампера начинает ускоряться между рельсами. Длина рельсов в ряде конструкций составляет от 10 см до 2 м.  В мощных системах сила тока достигает 105 А при энергии конденсаторной батареи  500 кДж. Скорости плазменных сгустков достигают скоростей 10 км/с в вакууме. В отдельных экспериментах, проводимых в атмосфере, плазменная оболочка работала как своеобразный поршень и ускоряла легкие предметы массой порядка 1 г до скоростей порядка 10 км/с.

                                                   Рис.6

      Более совершенной системой плазменного ускорителя  является коаксиальный инжектор (рис.7). Данный ускоритель позволяет получить плазменные сгустки достаточно правильной и устойчивой формы. Конструкцию инжектора составляют два металлических коаксиальных цилиндра (1) и (2),  разделенных между собой диэлектрическим кольцом (4). Для питания инжектора обычно используется емкостной накопитель, в который входит управляемый разрядник (5) и конденсаторная батарея (6).

                                                Рис.7  

Для работы устройства в камере создается вакуум. На электроды инжектора подается импульсное напряжение от емкостного генератора. Одновременно с подачей импульса в пространства между электродами вблизи диэлектрика (4) впрыскивается порция рабочего газа. Вначале происходит пробой по поверхности диэлектрика, а затем наступает пробой в газовом сгустке. Образовавшаяся плазма при усилении тока начинает ускоряться под действием силы Ампера. На выходе из инжектора плазма обычно имеет торообразную форму, которая затем при движении в пространстве приобретает вид сгустка неправильной формы. Скорость плазмы в коаксиальных инжекторах составляет v=1-10 км/с.                                                                                                    

                                              


S3

S2

S1



плазма

5

4

2

1

U2=10 В

К

А

U1=0

U3=30 В

U4=70 В

U5=-60 кВ

4

3

2

1

2,7 Ом-1см-1

18

27

72000

75000

89000

92000

2

1

3

29

3

4

1

2

5

6

~

1

2

3

4

1

2

3

4

5

6


 

А также другие работы, которые могут Вас заинтересовать

27995. Основные виды токсикантов, содержащиеся в пищевых продуктах, тяжелые металлы, остаточное каличество пестицидов, нитриты, радиоактивные элементы, действие токсикантов на человека и теплокровных животных 20.2 KB
  Отравления вызванные живыми микробами попавшими в организм с пищей называют пищевыми токсикоинфекциями. Это сальмонелла кишечная палочка и условно патогенные микроорганизмы. При этих заболеваниях образование микроорганизмами яда токсина происходит в организме. Токсическое действие некоторых соединений на организм человека заключается в способности токсических веществ вызывать отравление организма выражающееся в различных клинико анатомических проявлениях.
27996. Основные с/х ресурсы и их характеристика по зонам Западной Сибири 12.22 KB
  Рациональное использование природноресурсного потенциала с х производства.Для учета и рационального использования климатических ресурсов важно соблюдать соответствие классификаций климата; классификациям сельскохозяйственного производства т. Значение воды на всех стадиях производства сельскохозяйственной продукции общеизвестно. Предотвратить истощение и загрязнение водных ресурсов призваны экологизация промышленного и сельскохозяйственного производства и городского хозяйства очистка природных и сточных вод мелиоративные...
27997. Отрицательное воздействие промышленного животноводства на природные комплексы и их компоненты 3.22 KB
  При переходе животноводства на промышленную основу возникла проблема утилизации навозных стоков и безподстилочного навоза. Вблизи животноводческих ферм образуется огромное скопление навоза происходит нитратное и микробное загрязнение почв растительности поверхностных и грунтовых вод которое в 810 раз превышает естественный фон загрязнения почвенного и снежного покрова. При выборе места для размещения живких комплексов должны быть учтены возможности утилизации навоза и производственных стоков с учетом...
27998. Оценка изменения агроэкологических показателей плодородия почв и их функций: природная сопротивляемость, буферность, способность к биологическому, физическому и химическому самоочищению 5.3 KB
  Это связано со следующими обстоятельствами: охватом антропогенными нагрузками больших площадей иногда практически на 100; малой лесистостью и небольшими площадями луговостепных участков; значительной обнаженностью дефдированностью и эродированностью почвенного покрова; преобладанием определенных видов загрязнения в почве воде и грунтах связанных с удобрениями. Наибольшей буферной емкостью и способностью снижать негативное влияние загрязняющих веществ на растительные и животные организмы обладают почвы с...
27999. Поллютанты в почве и с/х продукции. Основные факторы, влияющие на их поведение в системе «почва-растение-животное-человек» 9.67 KB
  Главным природным источником тяжелых металлов являются породы магматические и осадочные и породообразующие минералы. Поступление тяжелых металлов в биосферу вследствие техногенного рассеивания осуществляется разнообразными путями. Кроме того источником загрязнения биоценозов могут служить орошение водами с повышенным содержанием тяжелых металлов внесение осадков бытовых сточных вод в почвы в качестве удобрения. Вторичное загрязнение происходит также вследствие выноса тяжелых металлов из отвалов рудников или...
28000. Почвенно-биотический комплекс как основа агроэкосистем. Биогеоценотическая деят-ть микробного биокомплекса и ее экологическое значение. Биоиндикация, ее достоинства и недостатки 15.6 KB
  Численность микроорганизмов сильно колеблется в зависимости от почвенноэкологических факторов. Роль микроорганизмов в круговороте веществ. Практически нет ни одного элемента который не подвергался бы воздействию микроорганизмов или их метаболитов. Минеральная часть почвы разрушается под воздействием различных неорганических и органических кислот щелочей ферментов и других соединений продуктов жизнедеятельности почвенных микроорганизмов.
28001. Проблемы производства экологически безопасной с/х продукции. Экономический механизм стимулирования производства экологически безопасной продукции 8.6 KB
  Экономический механизм стимулирования производства экологически безопасной продукции. Принципы экономического стимулирования выработаны и продолжают вырабатываться практикой. Комплексность системность всесторонность стимулирования означающая обязательность стимулирования использования современных технологических процессов если они имеют целью ресурсосбережение и проводятся экологически приемлемыми методами а также и собственно природоохранных мероприятий утилизация отходов строительство очистных сооружений в целях...
28002. Радионуклиды в агроэкосистеме: перенос радионуклидов по с/х цепочкам и их миграция в агроценозах 2.32 KB
  Основными источниками техногенных радионуклидов в агросфере являются остаточные количества долгоживущих радв поступивших в нее в результате испытаний ядерного взрыва выбросов и сбросов радов при работе атомных электростанций и др предприятий полного ядерного топливного цикла. Рост химизации с х ведет к увеличению применения удобрений и мелиорантов с повышенным содержанием естественных радов. Почва обладает уникальной сорбционной способностью по отношению к поступающим в нее радов.
28003. Сравнительный анализ функционирования естественных экосистем и агроэкосистем. Устойчивость эко(агроэко)системы: толерантность, уязвимость, гетерогенность агроценозов 5.26 KB
  Экосистемы исторически сложившееся в биосфере и на той или иной территории открытые но целостные и устойчивые системы живых организмов. Агроэкосистемы вторичные измененные человеком биогеоценозы основу которых составляют искусственно созданные биотические сообщества объединяемые видами живых организмов. Особенность агросистем в отличии от экосистем их неусточивость то есть к способности саморегуляции.