19231

ИСТОЧНИКИ ИОНОВ

Лекция

Физика

ИСТОЧНИКИ ИОНОВ Газоразрядные источники ионов нашли большое применение для создания приборов и устройств в научных экспериментах и технологических процессах. Ионные источники широко используются в работах по управляемому термоядерному синтезу и на совре...

Русский

2013-07-11

87.5 KB

11 чел.

ИСТОЧНИКИ ИОНОВ

       Газоразрядные источники ионов нашли большое применение для создания приборов и устройств в научных экспериментах и технологических процессах. Ионные источники широко используются в работах по управляемому термоядерному синтезу и на современных ускорителях. Высокочастотные и дуговые плазмотроны применяются в плазмохимии, для резки металлов и напыления различных элементов. Плазменные и электростатические ускорители, как источники реактивной тяги были установлены в качестве корректирующих двигателей на ряде спутников.                                  

      В качестве исходной среды плазмотроны содержат низкотемпературную плазму, из которой происходит извлечение ионов (рис.1). К одной из границ плазмы  S1 примыкает электродная система, состоящая из электродов  S2 и  S3. Потенциалы, которые подаются на данные электроды, обеспечивают извлечение и последующее ускорение ионов.

         

                                                                                          

                                                                                Рис.1

                                                                                                                                  

      В качестве устройства рассмотрим схему и параметры плазматрона, нашедшего применение в плазменных экспериментах и в качестве источника ионов на ускорителях заряженных частиц (рис.2). Основными частями плазматрона являются: 1- катод, 2- промежуточный электрод, 3-анод, 4-извлекающий электрод. Катод изготовляется из вольфрамовой нити, а отверстия в промежуточном электроде и в аноде составляют п5 мм и А 1,5 мм соответственно.                  

 

                                       Рис.2

                                                                                                        

Потенциалы, подаваемые на все электроды, указаны на рис.2. К промежуточному электроду подводится водяное охлаждение. Давление водорода в межэлектродном пространстве поддерживается на уровне  10-2 торр. В области отверстия промежуточного электрода (2) располагается ярко светящаяся плазменная сфера, окруженная двойным слоем (5), который представляет собой область интенсивной ионизации. Сферичность двойного слоя приводит к фокусировке электронов, ускоренных в двойном слое. Следует заметить, что при потребляемой мощности в 70 Вт и расходе газа в 25 см3/ч плазмотрон выдает пучок протонов с энергией около 60 кэВ и током 7,5 мА.          

      В качестве более совершенной системы, относительно плазматрона, в ряде случаев используется дуоплазматрон. Существенным отличием дуоплазматрона является создание достаточно сильного магнитного поля с помощью постоянных магнитов диапазона 0,5-10 кЭ в области двойного слоя и между промежуточным электродом и анодом (рис.2). В дуоплазматроне сжатие плазмы благодаря фокусирующей системе сочетается с действием неоднородного магнитного поля. В результате в дуоплазматронах достигается при большой вкладываемой мощности большая сила тока в пучке – до 0,5-1 А.                                                                                                           

      Плазма ВЧ -разряда в ряде случаев находит технологическое применение, как, например, в ВЧ -плазматронах (рис.3). Данное устройство позволяет получить направленный поток плазмы с температурой достигающей 10000 К. В данных плазматронах, как правило, используется индукционное возбуждение (рис.3), а мощность генераторов для различного типа устройств находится в диапазоне P=1 кВт-1 МВт при частотах в интервале f=1-15 МГц. В ряде случаев ввиду большой мощности требуется водяное охлаждение устройства. Корпус плазматрона составляет керамическая труба (2), в который вдувается через сопла (3) рабочий газ: воздух, аргон, кислород, азот и т.д. Обычно высокочастотная плазма образуется в области расположения индуктора (1), но в силу наличия потока газа плазменный шнур (4) приобретает вытянутую и заостренную форму (рис.3). Весьма эффективной является вихревая стабилизация газового потока (рис.3), при которой газ вдувается под углом к оси плазматрона.

                                              Рис.3

                                                                                                                                                                                                                 

      Рассмотрим распределение температуры в ВЧ –плазматроне (рис.4). Измерения температуры в данном примере проводились методом относительных интенсивностей спектральных линий. Индуктор (1) расположен вокруг керамической трубки (2) (внутренний диаметр 3 см), в которой создается плазма (3). В качестве рабочего газа использовался аргон при расходе газа 15 л/мин. Мощность генератора составляла 2,5 кВт при рабочей частоте 25 МГц. Внутренние области плазмы имеют торообразную форму и обладают максимальной температурой  t92000 при соответствующей проводимости 29 Ом--1см-1.

         

                                                         Рис.4

                                                                                                               

      ВЧ –плазмотроны применяются в следующих областях: 1) плазмохимия, 2) резка металлов, 3) обработка порошковых материалов. Рассмотрим устройство ВЧ –плазматрона, используемого для резки металлов и термообработки поверхностей (рис.5). Для сужения плазменной струи (1) в данной конструкции используется сопловая насадка (2) из тугоплавкого металла, имеющая водяное охлаждение (3). Частота генератора в данном примере составляла 1,8 МГц, при расходе газа в 40-150 л/мин, и скорости газовой струи (4) (воздух, кислород)  40-190 м/c. Вся конструкция находится внутри керамической трубы (5), вокруг которой расположен индуктор генератора (6). В результате применения насадки плотность потока плазмы увеличивается с 400 Вт/см2 до 4000 Вт/см2, что позволяет проводить эффективные технологические операции по резке металлов.

                                              Рис.5

                                                                                                    

                                                    

      Достаточно известным плазменным ускорителем, обладающим некоторыми рекордными параметрами является рельсотрон. Представим схематическое устройство рельсотрона (рис.6). Основу устройства составляют две металлические пластины (1) – “рельсы”, закрепленные на фиксированном расстоянии, между которыми на одном торце вставляется пластинка из диэлектрика (2) или тонкая металлическая фольга. При использовании рельсотрона как инжектора плазмы вся конструкция располагается в вакуумной камере. В ряде случаев эксперименты с рельсотронами проводятся при атмосферном давлении. К пластинам (1) рельсотрона подключается генератор тока (4), в качестве которого в различных системах используются: конденсаторные накопители, униполярные генераторы и т.д. Прохождение сильного тока вызывает испарение диэлектрика или взрыв фольги (2) и образование плазменной оболочки (3),  которая под действием силы Ампера начинает ускоряться между рельсами. Длина рельсов в ряде конструкций составляет от 10 см до 2 м.  В мощных системах сила тока достигает 105 А при энергии конденсаторной батареи  500 кДж. Скорости плазменных сгустков достигают скоростей 10 км/с в вакууме. В отдельных экспериментах, проводимых в атмосфере, плазменная оболочка работала как своеобразный поршень и ускоряла легкие предметы массой порядка 1 г до скоростей порядка 10 км/с.

                                                   Рис.6

      Более совершенной системой плазменного ускорителя  является коаксиальный инжектор (рис.7). Данный ускоритель позволяет получить плазменные сгустки достаточно правильной и устойчивой формы. Конструкцию инжектора составляют два металлических коаксиальных цилиндра (1) и (2),  разделенных между собой диэлектрическим кольцом (4). Для питания инжектора обычно используется емкостной накопитель, в который входит управляемый разрядник (5) и конденсаторная батарея (6).

                                                Рис.7  

Для работы устройства в камере создается вакуум. На электроды инжектора подается импульсное напряжение от емкостного генератора. Одновременно с подачей импульса в пространства между электродами вблизи диэлектрика (4) впрыскивается порция рабочего газа. Вначале происходит пробой по поверхности диэлектрика, а затем наступает пробой в газовом сгустке. Образовавшаяся плазма при усилении тока начинает ускоряться под действием силы Ампера. На выходе из инжектора плазма обычно имеет торообразную форму, которая затем при движении в пространстве приобретает вид сгустка неправильной формы. Скорость плазмы в коаксиальных инжекторах составляет v=1-10 км/с.                                                                                                    

                                              


S3

S2

S1



плазма

5

4

2

1

U2=10 В

К

А

U1=0

U3=30 В

U4=70 В

U5=-60 кВ

4

3

2

1

2,7 Ом-1см-1

18

27

72000

75000

89000

92000

2

1

3

29

3

4

1

2

5

6

~

1

2

3

4

1

2

3

4

5

6


 

А также другие работы, которые могут Вас заинтересовать

34654. Технологический цикл обработки информации на компьютере 49.5 KB
  Также стадия разработки может отражать количество реализованных функций запланированных для определённой версии программы. Также так называются программы не вышедшие еще в стадию альфа или бета но прошедшие стадию разработки для первичной оценки функциональных возможностей в действии. В отличие от альфа и бета версий преальфа может включать в себя не весь спектр функциональных возможностей программы. В этом случае подразумеваются все действия выполняемые во время проектирования и разработки программы вплоть до тестирования.
34655. Условный оператор. Оператор выбора 50.5 KB
  Например вычисление квадратного корня из числа проводится при условии =0 операторами: IF =0 Then b := Sqrt Else begin WriteLn' 0'; Redln; Hlt end; Оператор Hlt прекращает выполнение программы. PROGRM VES; { определение весовой категории спортсмена } Условная схема программы CONST 1='легкая категория'; 2='средняя категория'; 3='тяжелая категория';...
34656. Операторы организации циклов 57 KB
  Операторы ограничения и прерывания цикла Цикл с параметром Оператор цикла применяется при выполнении расчетов или других действий повторяющихся определенное количество раз. Оператор имеет вид: For i:= N1 To N2 Do оператор ; либо For i:= N1 DownTo N2 Do оператор ; Здесь i параметр цикла переменная порядкового типа N1 N2 начальное и конечное значения параметра цикла i. Напомним что оператор может иметь вид: Begin операторы end; Схема выполнения оператора цикла с параметром имеет вид: В случае связки To цикл...
34657. Стандартные процедуры и функции модуля CRT 54 KB
  Текстовый вывод на экран Процедура TextModeMode: Word;. Процедура TextColorColor: Byte Определяет цвет выводимых символов. Процедура TextBckgroundColor: Byte; Определяет цвет фона. Единственным параметром обращения к этим процедурам должно быть выражение типа Byte задающее код нужного цвета.
34658. Основы визуального программирования. Пустая форма и ее модификация. Компоненты страницы Standart 5.01 MB
  Если это свойство равно true то окно будет прозрачным. Степень прозрачности задаётся через свойство lphBlendVlue. nchors Это свойство есть и у формы и у компонентов. Это свойство раскрывающееся.
34659. Графические возможности Delphi, система координат 407.3 KB
  Методы вывода графических примитивов рассматривают свойство Cnvs как некоторую поверхность на которой можно рисовать. Координаты области вывода Метод построения графического примитива в общем случае имеет следующий синтаксис...
34660. Динамические структуры данных. Стеки, очереди. Списки. Бинарные деревья 178.5 KB
  При создании дерева вызывается рекурсивная процедура следующего вида: procedure Insertvr Root: TTree; X: T; { Дополнительная процедура создающая и инициализирующая новый узел } procedure CreteNodevr p: TTree; n: T; begin Newp; p^.Right := nil end; begin if Root = nil Then CreteNodeRoot X { создаем новый узел дерева } else with Root^ do begin if vlue X then InsertRight X else if vlue X Then InsertLeft X else { Действия производимые в случае повторного...
34661. Доступ к системным ресурсам. Определение переменной как Absolute. Предопределенные массивы MEM. Прерывания. Обработка прерываний 66 KB
  Прерывания. Прерывания Прерывание это особое состояние вычислительного процесса. В момент прерывания нарушается нормальный порядок выполнения команд программы и управление передается специальной процедуре которая входит в состав ДОС и называется процедурой обработки прерывания. В архитектуре центрального процессора ПК предусмотрены прерывания двух типов аппаратные и программные.
34662. Введение. История развития языков программирования 38.76 KB
  На занятиях по дисциплине АО мы будем изучать язык Паскаль. Паскаль язык программирования который относительно прост в изучении довольно ясен и логичен и будучи первым изучаемым языком программирования приучает к хорошему стилю. Паскаль стал наследником Алгола. Время рождения языка Паскаль начало 70х годов.