19231

ИСТОЧНИКИ ИОНОВ

Лекция

Физика

ИСТОЧНИКИ ИОНОВ Газоразрядные источники ионов нашли большое применение для создания приборов и устройств в научных экспериментах и технологических процессах. Ионные источники широко используются в работах по управляемому термоядерному синтезу и на совре...

Русский

2013-07-11

87.5 KB

11 чел.

ИСТОЧНИКИ ИОНОВ

       Газоразрядные источники ионов нашли большое применение для создания приборов и устройств в научных экспериментах и технологических процессах. Ионные источники широко используются в работах по управляемому термоядерному синтезу и на современных ускорителях. Высокочастотные и дуговые плазмотроны применяются в плазмохимии, для резки металлов и напыления различных элементов. Плазменные и электростатические ускорители, как источники реактивной тяги были установлены в качестве корректирующих двигателей на ряде спутников.                                  

      В качестве исходной среды плазмотроны содержат низкотемпературную плазму, из которой происходит извлечение ионов (рис.1). К одной из границ плазмы  S1 примыкает электродная система, состоящая из электродов  S2 и  S3. Потенциалы, которые подаются на данные электроды, обеспечивают извлечение и последующее ускорение ионов.

         

                                                                                          

                                                                                Рис.1

                                                                                                                                  

      В качестве устройства рассмотрим схему и параметры плазматрона, нашедшего применение в плазменных экспериментах и в качестве источника ионов на ускорителях заряженных частиц (рис.2). Основными частями плазматрона являются: 1- катод, 2- промежуточный электрод, 3-анод, 4-извлекающий электрод. Катод изготовляется из вольфрамовой нити, а отверстия в промежуточном электроде и в аноде составляют п5 мм и А 1,5 мм соответственно.                  

 

                                       Рис.2

                                                                                                        

Потенциалы, подаваемые на все электроды, указаны на рис.2. К промежуточному электроду подводится водяное охлаждение. Давление водорода в межэлектродном пространстве поддерживается на уровне  10-2 торр. В области отверстия промежуточного электрода (2) располагается ярко светящаяся плазменная сфера, окруженная двойным слоем (5), который представляет собой область интенсивной ионизации. Сферичность двойного слоя приводит к фокусировке электронов, ускоренных в двойном слое. Следует заметить, что при потребляемой мощности в 70 Вт и расходе газа в 25 см3/ч плазмотрон выдает пучок протонов с энергией около 60 кэВ и током 7,5 мА.          

      В качестве более совершенной системы, относительно плазматрона, в ряде случаев используется дуоплазматрон. Существенным отличием дуоплазматрона является создание достаточно сильного магнитного поля с помощью постоянных магнитов диапазона 0,5-10 кЭ в области двойного слоя и между промежуточным электродом и анодом (рис.2). В дуоплазматроне сжатие плазмы благодаря фокусирующей системе сочетается с действием неоднородного магнитного поля. В результате в дуоплазматронах достигается при большой вкладываемой мощности большая сила тока в пучке – до 0,5-1 А.                                                                                                           

      Плазма ВЧ -разряда в ряде случаев находит технологическое применение, как, например, в ВЧ -плазматронах (рис.3). Данное устройство позволяет получить направленный поток плазмы с температурой достигающей 10000 К. В данных плазматронах, как правило, используется индукционное возбуждение (рис.3), а мощность генераторов для различного типа устройств находится в диапазоне P=1 кВт-1 МВт при частотах в интервале f=1-15 МГц. В ряде случаев ввиду большой мощности требуется водяное охлаждение устройства. Корпус плазматрона составляет керамическая труба (2), в который вдувается через сопла (3) рабочий газ: воздух, аргон, кислород, азот и т.д. Обычно высокочастотная плазма образуется в области расположения индуктора (1), но в силу наличия потока газа плазменный шнур (4) приобретает вытянутую и заостренную форму (рис.3). Весьма эффективной является вихревая стабилизация газового потока (рис.3), при которой газ вдувается под углом к оси плазматрона.

                                              Рис.3

                                                                                                                                                                                                                 

      Рассмотрим распределение температуры в ВЧ –плазматроне (рис.4). Измерения температуры в данном примере проводились методом относительных интенсивностей спектральных линий. Индуктор (1) расположен вокруг керамической трубки (2) (внутренний диаметр 3 см), в которой создается плазма (3). В качестве рабочего газа использовался аргон при расходе газа 15 л/мин. Мощность генератора составляла 2,5 кВт при рабочей частоте 25 МГц. Внутренние области плазмы имеют торообразную форму и обладают максимальной температурой  t92000 при соответствующей проводимости 29 Ом--1см-1.

         

                                                         Рис.4

                                                                                                               

      ВЧ –плазмотроны применяются в следующих областях: 1) плазмохимия, 2) резка металлов, 3) обработка порошковых материалов. Рассмотрим устройство ВЧ –плазматрона, используемого для резки металлов и термообработки поверхностей (рис.5). Для сужения плазменной струи (1) в данной конструкции используется сопловая насадка (2) из тугоплавкого металла, имеющая водяное охлаждение (3). Частота генератора в данном примере составляла 1,8 МГц, при расходе газа в 40-150 л/мин, и скорости газовой струи (4) (воздух, кислород)  40-190 м/c. Вся конструкция находится внутри керамической трубы (5), вокруг которой расположен индуктор генератора (6). В результате применения насадки плотность потока плазмы увеличивается с 400 Вт/см2 до 4000 Вт/см2, что позволяет проводить эффективные технологические операции по резке металлов.

                                              Рис.5

                                                                                                    

                                                    

      Достаточно известным плазменным ускорителем, обладающим некоторыми рекордными параметрами является рельсотрон. Представим схематическое устройство рельсотрона (рис.6). Основу устройства составляют две металлические пластины (1) – “рельсы”, закрепленные на фиксированном расстоянии, между которыми на одном торце вставляется пластинка из диэлектрика (2) или тонкая металлическая фольга. При использовании рельсотрона как инжектора плазмы вся конструкция располагается в вакуумной камере. В ряде случаев эксперименты с рельсотронами проводятся при атмосферном давлении. К пластинам (1) рельсотрона подключается генератор тока (4), в качестве которого в различных системах используются: конденсаторные накопители, униполярные генераторы и т.д. Прохождение сильного тока вызывает испарение диэлектрика или взрыв фольги (2) и образование плазменной оболочки (3),  которая под действием силы Ампера начинает ускоряться между рельсами. Длина рельсов в ряде конструкций составляет от 10 см до 2 м.  В мощных системах сила тока достигает 105 А при энергии конденсаторной батареи  500 кДж. Скорости плазменных сгустков достигают скоростей 10 км/с в вакууме. В отдельных экспериментах, проводимых в атмосфере, плазменная оболочка работала как своеобразный поршень и ускоряла легкие предметы массой порядка 1 г до скоростей порядка 10 км/с.

                                                   Рис.6

      Более совершенной системой плазменного ускорителя  является коаксиальный инжектор (рис.7). Данный ускоритель позволяет получить плазменные сгустки достаточно правильной и устойчивой формы. Конструкцию инжектора составляют два металлических коаксиальных цилиндра (1) и (2),  разделенных между собой диэлектрическим кольцом (4). Для питания инжектора обычно используется емкостной накопитель, в который входит управляемый разрядник (5) и конденсаторная батарея (6).

                                                Рис.7  

Для работы устройства в камере создается вакуум. На электроды инжектора подается импульсное напряжение от емкостного генератора. Одновременно с подачей импульса в пространства между электродами вблизи диэлектрика (4) впрыскивается порция рабочего газа. Вначале происходит пробой по поверхности диэлектрика, а затем наступает пробой в газовом сгустке. Образовавшаяся плазма при усилении тока начинает ускоряться под действием силы Ампера. На выходе из инжектора плазма обычно имеет торообразную форму, которая затем при движении в пространстве приобретает вид сгустка неправильной формы. Скорость плазмы в коаксиальных инжекторах составляет v=1-10 км/с.                                                                                                    

                                              


S3

S2

S1



плазма

5

4

2

1

U2=10 В

К

А

U1=0

U3=30 В

U4=70 В

U5=-60 кВ

4

3

2

1

2,7 Ом-1см-1

18

27

72000

75000

89000

92000

2

1

3

29

3

4

1

2

5

6

~

1

2

3

4

1

2

3

4

5

6


 

А также другие работы, которые могут Вас заинтересовать

84072. Особенности сердечнососудистой системы у детей младшего возраста 31.68 KB
  Сердце и сосуды у детей значительно отличаются от сердечнососудистой системы взрослых. Рост сердца у детей идет во всех направлениях но неравномерно т. У новорожденных и детей первых 05 2 лет жизни сердце расположено поперечно и более высоко.
84073. Репродуктивная система человека 30.41 KB
  Репродуктивная система комплекс органов и систем которые обеспечивают процесс оплодотворения способствуют воспроизводству человека. Мужская репродуктивная система система органов расположенных снаружи тела около таза которые принимают участие в процессе репродукции. Репродуктивная система женщины состоит из органов расположенных преимущественно внутри тела в тазовой области.
84074. Половое созревание, регуляция полового созревания 33.51 KB
  Еще до появления первой менструации отмечается усиление функции гипофиза и яичников. В последние годы раскрыты новые механизмы становления и регуляции репродуктивной функции. Важная роль в регуляции репродуктивной функции принадлежит эндогенным опиатам энкефалины и их производные пре и проэнкефалины лейморфин неоэндорфины динорфин которые оказывают морфиноподобное действие и были выделены в центральных и периферических структурах нервной системы в середине 1970х годов. Данные о роли нейротрансмиттеров и влиянии через них эндогенных...
84075. Терморегуляция, виды терморегуляции 31.19 KB
  Различают несколько механизмов отдачи тепла в окружающую среду. Излучение отдача тепла в виде электромагнитных волн инфракрасного диапазона. Количество тепла рассеиваемого организмом в окружающую среду излучением пропорционально площади поверхности излучения площади поверхности тела не покрытой одеждой и градиенту температуры. При температуре окружающей среды 20с и относительной влажности воздуха 4060 организм взрослого человека рассеивает путём излучения около 4050 всего отдаваемого тепла.
84076. Терморегуляция у детей младшего возраста 31.18 KB
  Температура тела ребенка в первые месяцы жизни не вполне постоянна. Она может изменяться под влиянием различных факторов: охлаждения или перегревания тела приема пищи крика и так далее. Так у новорожденных на 1 кг массы тела приходится 700 см2 кожи у десятилетних детей 425 см2 а у взрослых 220 см2. Накопление тепла в организме способствует повышению температуры тела.
84077. Предмет и задачи анатомии и физиологии, предмет и задачи возрастной анатомии и физиологии 29.86 KB
  Физиология наука о функциях живого организма как единого целого о процессах протекающих в нём и механизмах его деятельности. В настоящее время физиология и анатомия накопили огромный фактический материал. Это привело к тому что от физиологии и от анатомии отпочковываются две самостоятельные науки это возрастная анатомия и возрастная физиология. Возрастная физиология это наука которая изучает особенности процесса жизнедеятельности организма на разных этапах онтогенеза.
84078. Современные методы изучения организма. Клетка, строение животной клетки 33.92 KB
  Клетка строение животной клетки. Масса и длина тела окружность грудной клетки и талии обхват плеча и голени толщина кожножировой складки все это и многое другое традиционно измеряют антропологи с помощью медицинских весов ростомера антропометра и других специальных приспособлений. В каждой клетке различают две основные части цитоплазму и ядро в цитоплазме в свою очередь содержатся органоиды мельчайшие структуры клетки обеспечивающие ее жизнедеятельность митохондрии рибосомы клеточный центр и др. В ядре перед делением...
84079. Ткани, органы и системы органов 30.93 KB
  Особенностью соединительной ткани является сильное развитие межклеточного вещества. К соединительной ткани относятся кровь лимфа хрящевая костная жировая ткани. Благодаря сокращению скелетных мышц становится возможным передвижение тела в пространстве; особое строение сердечной мышечной ткани обеспечивает одновременное сокращение больших участков сердечной мышцы. Структурной единицей нервной ткани является нервная клетка нейрон состоящий из тела овальной звездчатой или многоугольной формы и отходящих от него отростков.
84080. Общие принципы регуляции работы организма 22.35 KB
  Регуляция в живых организмах представляет собой совокупность процессов обеспечивающих необходимые режимы функционирования достижение определенных целей или полезных для организма приспособительных результатов. Процесс физиологической регуляции является основой самоудовлетворения потребностей живого организма.