19232

ПРОВОДИМОСТЬ ПЛАЗМЫ

Лекция

Физика

Проводимость плазмы Одной из наиболее важных величин характеризующих плазму является проводимость. Для низкотемпературной плазмы типичным случаем является ее многокомпонентность. Поэтому для теоретического рассмотрения наиболее простой является водор...

Русский

2013-07-11

126 KB

34 чел.

Проводимость плазмы

       Одной из наиболее важных величин, характеризующих плазму, является проводимость. Для низкотемпературной плазмы типичным случаем является ее многокомпонентность. Поэтому для теоретического рассмотрения наиболее простой является водородная полностью ионизованная плазма, что возможно при температурах  Т=1-10 кэВ. Потребность в изучении проводимости возникла в 50е годы XX века в период начала работ по управляемому термоядерному синтезу, а также при изучении космической плазмы. Формула для проводимости данной плазмы впервые была получена известным американским теоретиком Лайманом Спитцером. Для вывода формулы считается, что полностью ионизованная водородная плазма помещена во внешнее электрическое поле (рис.1). Величинами, характеризующими направленное движение электронов и ионов, являются их дрейфовые скорости ue и ui . Тогда суммарная плотность токов плазмы запишется в виде:

                       

Электронные скорости в случае высокотемпературной плазмы характеризуются большими значениями, чем ионные, поэтому полагают, что  .

           

                                                                     Рис.1

                                                                                                                     

      В силу кулоновского взаимодействия, траектория электрона в плазме, как классической частицы, представляет плавную кривую (рис.1). Под столкновением электрона и иона понимается случай изменения направления траектории на угол 900. Заметим, что в общем случае учитываются три вида столкновений: электрон-ионные, ион- ионные и электрон–электронные. В самой простой модели столкновений ионы считаются неподвижными и учитываются только электрон-ионные столкновения. Данные столкновения характеризуются длиной столкновения  , зависящей от температуры. Время между данными столкновениями выражается в виде  , где ve –тепловая скорость электрона. Предполагается, что при каждом столкновении электрон останавливается и полностью передает иону свой импульс  mue . Уравнение для движения электрона будет иметь вид:

                        

С учетом дрейфовой скорости и времени столкновений уравнение можно записать в форме:

                        

Для дрейфовой скорости электронов получается выражение:

                        

Формула для плотности тока запишется следующим образом:

                        

Проводимость плазмы выражается в виде:

                        

Приведем выражение, полученное в теории плазмы для времени электрон-ионных столкновений:

                        

Данная формула содержит зависимость от температуры, как , а также, величину, имеющую слабую (логарифмическую) зависимость от температуры – кулоновский логарифм:

                

Как правило, данная зависимость от температуры Тe в кулоновском логарифме не учитывается. При использовании данных выражений формула Спитцера для проводимости примет вид:

                 

                 

Единицы температуры в формуле – градусы Кельвина. В диапазоне значений  n  и  Te , свойственных высокотемпературной плазме, выбирается значение  =15 и приближенный вид формулы будет следующий:

                 

Данные формулы записываются в системе СГСЭ. Принципиальным моментом для формулы Спитцера является ее зависимость практически только от температуры. Следует заметить, что полностью ионизованная водородная плазма обладает проводимостью, сравнимой с проводимостью меди при Т=107 К и значительно превосходит проводимость морской воды:

                 Спит.1017 ед.СГСЭ

                 медь 1017 ед.СГСЭ

                 м.вода 1011 ед.СГСЭ

                        

      Предположим, что полностью ионизованная водородная плазма помещена в высокочастотное электрическое поле, которое описывается следующей зависимостью:

                     

Допустим, что в проводимость, также, как и в формуле Спитцера, основной вклад вносит электронная составляющая, т.е. электронная дрейфовая скорость значительно превосходит ионную дрейфовую скорость (ue>>ui). Уравнение движения для электрона в электрическом поле запишется в виде:

                    

Последнее слагаемое в формуле представляет собой импульс электрона, переданный иону в результате столкновения, где  –частота электрон-ионных столкновений:

                   

Общий вид уравнения будет следующий:

                   

Зависимость  x(t) ищется в виде:

                   

Данное выражение подставляется в уравнение:

                  

Для амплитуды колебаний  x0  получается следующее выражение:

                 

Плотность тока будет иметь вид:

                

Проводимость плазмы, полученная из последнего уравнения, умножается на выражение комплексно сопряженное со знаменателем, что в результате дает следующую формулу:

                

               

Проводимость плазмы обычно представляют в виде действительной и мнимой частей:

              

              

   1) При , когда частота электрон-ионных столкновений значительно превышает частоту высокочастотного поля, проводимость плазмы определяется действительной частью проводимости и имеет вид:

              

   2) Если , т.е. при значительном превышении частоты высокочастотного поля над частотой электрон-ионных столкновений, проводимость плазмы зависит от мнимой части проводимости:

             

                      

     Рассмотрим проводимость полностью ионизованной водородной плазмы, помещенной в постоянное однородное магнитное поле. Более простым случаем является одинаковое направление магнитного и электрического полей . Сила Лоренца, действующая на заряженную частицы в данном варианте не будет иметь своей составляющей. В результате проводимость плазмы определяется формулой Спитцера:

                  = Спит.

      Представим случай взаимного перпендикулярного расположения полей: . В скрещенных полях частицы (протоны и электроны) будут испытывать дрейфовое движение в одном и том же направлении перпендикулярно электрическому и магнитному полям (рис.2), а скорость их дрейфа будет равна:

                

                                                                 

                                                       Рис.2

                                                                                                         

Рассмотрим влияние столкновений электрона и протона на дрейфовую скорость. Выразим дрейфовые скорости протонов и электронов:

                            

Запишем выражения для сил, действующих на протоны и электроны с учетом столкновений:      

                            

Данные силы равны по модулю и противоположны:               

              

В результате плазма как целое (протоны и электроны) будет испытывать дрейф в направлении перпендикулярном магнитному полю, а движение вдоль электрического поля будет отсутствовать. Ввиду этого, проводимость плазмы  при скрещенных электрическом и магнитном полях будет равна нулю:

              

Данный результат является возможным для различных установок, использующих внешнее магнитное поле для стабилизации плазмы.


ui

ue

uд

x


 

А также другие работы, которые могут Вас заинтересовать

40143. ОПТИМАЛЬНОЕ ОБНАРУЖЕНИЕ КВАЗИДЕТЕРМИНИРОВАННЫХ СИГНАЛОВ 241 KB
  Для этого потребуется определить распределение вероятностей достаточной статистики у поступающей на пороговое устройство а именно распределение вероятностей корреляционного интеграла y при отсутствии  = 0 и наличии  = 1 сигнала st на входе обнаружителя.5 рассчитываются характеристики оптимального обнаружения детерминированного сигнала в белом шуме.1 сплошными линиями показаны характеристики оптимального обнаружения детерминированного сигнала в белом шуме. Характеристики обнаружения позволяют определить минимальную энергию...
40144. ОПТИМАЛЬНОЕ РАЗЛИЧЕНИЕ ДЕТЕРМИНИРОВАННЫХ СИГНАЛОВ 360 KB
  5 Рош а б ОПТИМАЛЬНОЕ РАЗЛИЧЕНИЕ ДЕТЕРМИНИРОВАННЫХ СИГНАЛОВ Различение двух детерминированных сигналов. Постановка задачи и правило принятия решения Задача различения сигналов находит широкое распространение в дискретной радиосвязи когда передача символа 1 связана с излучением сигнала s1t а передача символа 0 связана с излучением другого сигнала s2t отличающегося от s1t хотя бы одним какимнибудь своим параметром. Поэтому решение о том какой из сигналов принимается может осуществляться с ошибкой. Отсюда возникает задача...
40145. ОПТИМАЛЬНАЯ ОЦЕНКА ПАРАМЕТРОВ СИГНАЛА 683 KB
  Очевидно пользователю для извлечения из полученного сигнала сведений следует определить значения параметров сигнала несущих требуемую информацию. Устройство предназначенное для измерения параметров сигнала будем называть измерителем. Кроме того на измерения может существенно влиять наличие у сигнала не только полезных несущих необходимую информацию параметров но и параметров не известных потребителю и не содержащих интересных для него сведений.
40146. ФИЛЬТРАЦИЯ ИЗМЕНЯЮЩИХСЯ ПАРАМЕТРОВ СИГНАЛА 318 KB
  Полезный сигнал st является функцией времени t и многокомпонентного параметра сообщения представляющего собой векторный случайный процесс. Общая задача фильтрации заключается в том чтобы на основании априорных сведений и по наблюдаемой реализации xt процесса t для каждого момента времени t сформировать апостериорную плотность вероятности сообщения . Априорные сведения о вероятностных характеристиках сообщения и помехи nt задаются либо в форме многомерных плотностей вероятности либо в виде дифференциальных уравнений с...
40147. ЛИНЕЙНАЯ ФИЛЬТРАЦИЯ СООБЩЕНИЙ 539 KB
  2 Здесь Ht известная функция несущее колебание; Htt = s[t t] передаваемый сигнал; nt белый гауссовский шум не обязательно стационарный с нулевым средним значением и односторонней спектральной плотностью N0;  постоянный коэффициент определяющий ширину спектра сообщения t. Первое уравнение определяет алгоритм формирования оценки а следовательно и структурную схему фильтра а второе ошибку фильтрации дисперсию оценки сообщения Rt. Коэффициент Kt зависящий от дисперсии оценки сообщения Rt и...
40148. ИНФОРМАЦИЯ В ДИСКРЕТНЫХ СООБЩЕНИЯХ 412.5 KB
  Когда говорят об информации то имеют в виду как объективные сведения о событиях в материальном мире так и получателя этих сведений то есть субъекта. Определить количество информации и передать его с наименьшими потерями по каналам связи не интересуясь смыслом информации это предмет теории информации которую иногда называют математической теорией связи. Качественная сторона информации например её ценность полезность важность исследуется в семантической теории информации.
40149. ИНФОРМАЦИЯ В НЕПРЕРЫВНЫХ СООБЩЕНИЯХ 1.23 MB
  Представляет интерес определить собственное количество информации заключённое в непрерывном сообщении с тех же позиций что и для дискретного сообщения то есть с использованием понятия энтропии. Замену непрерывной функции времени можно осуществить последовательностью дискретов на основании теоремы Котельникова согласно которой если отсчёты непрерывного сообщения взять через интервал t=1 2Fc где Fc максимальная частота спектра реализации xt то непрерывная функция xt на интервале времени наблюдения [0T] эквивалентна...
40150. ПРОПУСКНАЯ СПОСОБНОСТЬ КАНАЛА СВЯЗИ 1.03 MB
  Рассматривая появление символа алфавита как реализацию случайной величины можно найти энтропию сообщения на входе канала связи 3. Пусть в канале связи отсутствуют помехи. Пусть в канале связи действуют помехи рис.
40151. ОСНОВЫ ТЕОРИИ КОДИРОВАНИЯ ИНФОРМАЦИИ 87.5 KB
  Кодирование линии связи заключается в преобразовании закодированного сообщения при котором обеспечивается возможность надежной синхронизации и минимум искажений при трансляции сообщения через линию связи среду передачи информации при этом число исходных комбинаций равно числу закодированных. В теоретическом плане эта возможность основывается на наличии избыточности сообщения. Под избыточностью сообщения понимают разность между максимально возможной и реальной энтропией . Максимально возможная энтропия определяется для случая когда...