19233

КОЛЕБАНИЯ И ВОЛНЫ В ПЛАЗМЕ

Лекция

Физика

Колебания и волны в плазме Ввиду наличия заряженной и нейтральной компонент плазма обладает большим числом колебаний и волн некоторые из которых свойственны также газообразным средам а другие присуще исключительно плазме. Наиболее простые колебания заря...

Русский

2013-07-11

168.5 KB

31 чел.

Колебания и волны в плазме

       Ввиду наличия заряженной и нейтральной компонент плазма обладает большим числом колебаний и волн, некоторые из которых свойственны также газообразным средам, а другие присуще исключительно плазме. Наиболее простые колебания заряженных частиц в плазме были открыты Ленгмюром. Колебания и волны в плазме, находящейся магнитном поле имеют свою специфику и отличия. Изучение распространения электромагнитных волн в плазме и их отражения от поверхности плазмы представляют собой важные проблемы, необходимые для успешной радиосвязи как в пределах Земли, так и с космическими аппаратами. От присутствия колебательных и волновых процессов во многом зависит устойчивость плазмы в ряде термоядерных установок и газоразрядных устройств. Большой интерес исследователей привлекают нелинейные волны – солитоны, обнаруженные в плазменных средах.                               

      Рассмотрим наиболее простой вид электронных колебаний в плазме – ленгмюровские колебания. Предположим, что температура плазмы мала, и тепловым движением заряженных частиц  можно пренебречь. Пренебрежем также столкновениями частиц между собой.

                                                                    Рис.1

Будем считать ионы неподвижными, и допустим, что произошло смещение электронного слоя (рис.1). Избыточный заряд в возмущенном слое выразится в виде:

                       

Где n0 – невозмущенная электронная концентрация, S – площадь данного слоя.

Для возмущенного электронного слоя справедливо уравнение Пуассона:

                      

В одномерном случае уравнение запишется в форме:

                     

После интегрирования данного выражения напряженность электрического поля в промежутке от 0 до  x0  запишется в виде:           

                     

          Запишем уравнение движения электрона под действием электрической силы:

                     

Если поделить все выражение на массу электрона, то можно прийти к уравнению колебаний:

                    

Колебания происходят с частотой плазменных или ленгмюровских колебаний p:

                   

В более сложном выводе с использованием уравнений гидродинамики присутствует концентрация плазмы в виде:

                                 

Где n – возмущенное значение концентрации при наличии колебаний. Для уравнения относительно  n  также получается уравнение колебаний с плазменной частотой  p:

                 

Данные продольные колебания электронной плотности можно наблюдать в различных видах газовых разрядов при подаче на один из электродов импульса возбуждения.

       В некоторых случаях в плазме могут возбуждаться продольные волны, имеющие схожесть с волнами в газовых средах, поэтому приведем краткое описание вывода волн в газе.  В качестве исходных обычно используются уравнение непрерывности и уравнение Эйлера:            

                               

Где -плотность газа, -его скорость, p -давление газа. Для вывода обычно используется потенциал   , определяемый из уравнения:

                              

Окончательные уравнения записываются для данного потенциала, или для возмущенного значения давления  p  ():                                    

                              

В одномерном случае приходят к волновому уравнению для возмущенного значения давления:

                

Для скорости звука в газе записывается выражение:

                                  

Где m0 –масса атома, Cp –теплоемкость при постоянном давлении,  CV –теплоемкость при постоянном объеме.                

                                                                 

       Рассмотрим теперь волны в плазме при учете теплового движения электронов. Пренебрежем электрон-ионными столкновениями. Запишем уравнение движения электрона при наличии слагаемого, учитывающего градиент давления:

                     

При использовании выражения для давления идеального газа, слагаемое с градиентом давления будет записано в виде:

                                 

Для электрического поля в одномерном случае, как и при ленгмюровских волнах, можно записать:             

                               

                    

Также используется уравнение непрерывности в одномерном случае:

                            

                                 

Окончательный вид уравнения для возмущенного значения концентрации плазмы n будет следующий:

                                           

Полученное выражение является уравнением типа Клейна–Гордона, в котором присутствует плазменная частота p и множитель сходный с тепловой скоростью электронов   ve :

                                                      

Решение данного уравнения ищется в виде:

                 

Где   -частота и k –волновое число.

       После подстановки в волновое уравнение можно прийти к следующему дисперсионному соотношению:

                 

Обычно выражение данного типа устанавливает связь между частотой и волновым вектором в волне. С помощью дисперсионного уравнения можно найти выражения для фазовой и групповой скоростями волны. Фазовая скорость волны определяется по формуле:    

                   

                                                           

Для  групповой скорости записывается  выражение:

                

                              

      Показатель преломления и диэлектрическая проницаемость плазмы выражается в виде:  

                 

                 

Следует заметить, что последнее выражение имеет смысл только при частотах больших плазменной частоты   >p .

                              

       Рассмотрим распространение электромагнитных волн через плазму. Предположим, что плазма однородная и пренебрежем электрон-ионными столкновениями. Допустим, что на границу плазмы из вакуума падает плоская поляризованная электромагнитная волна (рис.2).

   

                                                                Рис.2

                                                                                                                 

Уравнение движения электрона в поле волны можно записать в виде:                    

                    

Электрическое поле в волне представляется в виде:

                   

Подставим выражение для поля в уравнение движения:

                   

Зависимость для координаты электрона запишется следующим образом:

                  

В результате электрон будет совершать колебательные движения с частотой электрического поля волны.

              

       Представим электрический дипольный момент единицы объема:

                                  

Его связь с электрическим полем и диэлектрической проницаемостью будет следующей:

                   

Запишем выражение для диэлектрической проницаемости:

                                       

                                      

Показатель преломления выражается в виде:        

                   

Ввиду данных формул для диэлектрической проницаемости плазмы и ее показателя преломления можно выделить два случая:

1)  - в плазме распространяются электромагнитные волны и диэлектрическая проницаемость принимает значения в диапазоне от 0 до 1 (рис.3), что свойственно исключительно плазменным средам. Следует напомнить, что выражение для показателя преломления в оптически прозрачных твердых средах больше единицы.

                                                                          Рис.3

                                                                                                                      

2)  - волны в плазме затухают и распространяются на глубину скин-слоя:

                  

Величина электрического поля в плазме при этом будет уменьшаться по закону:

                             

От границы плазмы в этом случае происходит отражение электромагнитной волны. Данный эффект имеет большое значение при отражении радиоволн от ионосферы.

       Найдем дисперсионное соотношение и скорости электромагнитных волн (фазовую и групповую). Запишем выражение для волнового вектора:

                  

Подставим его в соотношение для диэлектрической проницаемости плазмы:

                 

                 

В результате дисперсионное уравнение будет иметь вид:                    

                         

Для фазовой и групповой скоростей можно получить соотношения:                             

                                                               

                               

При сравнении с подобными выражениями для волн в плазме можно обратить внимание, что вместо тепловой скорости  ve  в данных формулах присутствует скорость света  с.

                                                                                       


невозмущенная плазма

избыток электронов

x

x

x

x0

отсутствие электронов

By

kz

Ex

y

z

x

плазма

вакуум

волна

=n2

1

0

p


 

А также другие работы, которые могут Вас заинтересовать

2507. Понятие, сущность, функции и цели международного права 26.24 KB
  Международное право – это особая правовая система, регулирующая международные отношения его субъектов по средствам юридических норм, создаваемых путем фиксированного (договор) или молчаливо выраженного (обычай) соглашения между ними и обеспечиваемых принуждением, формы, характер и пределы которого определяются в межгосударственных соглашениях.
2508. Соціальна історія українських земель у польсько-литовський період (14 – 17 ст.) 187.36 KB
  Державний устрій та суспільний лад Великого князівства Литовського та Речі Посполитої. Соціальна структура українського населення у складі Великого князівства Литовського та Польського королівства. Правова система. Особливості розвитку української культури в 14 – 17 ст.
2509. Оптика и атомная физика 10.06 MB
  Определение показателя преломления стекла с помощью микроскопа. Определение радиуса кривизны линзы с помощью колец Ньютона. Изучение поляризации света. Проверка закона Малюса. Определение концентрации раствора сахара поляриметром. Изучение сериальных закономерностей в спектре излучения атомарного водорода и определение постоянной Ридберга. Исследование явлений дифракции и поляризации света.
2510. Вращательные движения твердого тела и их законы 292.5 KB
  Проверка зависимости углового ускорения ε от момента силы М при постоянном моменте инерции J. Проверка зависимости момента инерции J грузов от расстояния до оси вращения.
2511. Введение в физику низкотемпературной плазмы 839.85 KB
  Основные понятия физики плазмы. Экранирование зарядов в плазме. Дебаевский радиус. Элементарные процессы в плазме. Термоядерная плазма. Критерий Лоусона. Лазерный термоядерный синтез. Движение заряженных частиц в электромагнитных полях. Магнитный момент частицы в магнитном поле.
2512. Физика в биологических обследованиях лабораторные и семинарские занятия 692.35 KB
  Изучение механических колебаний. Изучение аппарата для ультразвуковой терапии. Определение скорости звука в воздухе методом стоячих волн. Изучение физической основы аускультативного метода измерения артериального давления крови. Изучение механических моделей биологических тканей. Биоэлектрическая активность биологических объектов.
2513. Определение удельного заряда электрона магнетрона 153 KB
  Непосредственное измерение массы электрона представляет значительные трудности ввиду ее малости. Легче определить удельный заряд электрона, т.е. отношение величины заряда к массе (е / m), а по величине заряда е и удельному заряду можно найти массу m электрона. Для определения е / m могут применяться различные методы. В данной работе применен метод магнетрона.
2514. Исследование свойств плоскостного полупроводникового триода (транзистора) 609 KB
  Изучить устройство и принцип действия полупроводникового триода, Снять вольт − амперные характеристики триода; Вычислить коэффициенты усиления триода по току, напряжению и мощности.
2515. Определение волны световой волны при помощи дифракции от щели 386 KB
  Рассмотрим прохождение волны через узкую прямоугольную щель. Согласно принципу Гюйгенса каждая точка фронта волны, достигающей щели, является источником вторичных волн, распространяющихся во все стороны. Поверхность, огибающая эти волны и представляющая фронт прошедшей через щель волны.