19233

КОЛЕБАНИЯ И ВОЛНЫ В ПЛАЗМЕ

Лекция

Физика

Колебания и волны в плазме Ввиду наличия заряженной и нейтральной компонент плазма обладает большим числом колебаний и волн некоторые из которых свойственны также газообразным средам а другие присуще исключительно плазме. Наиболее простые колебания заря...

Русский

2013-07-11

168.5 KB

31 чел.

Колебания и волны в плазме

       Ввиду наличия заряженной и нейтральной компонент плазма обладает большим числом колебаний и волн, некоторые из которых свойственны также газообразным средам, а другие присуще исключительно плазме. Наиболее простые колебания заряженных частиц в плазме были открыты Ленгмюром. Колебания и волны в плазме, находящейся магнитном поле имеют свою специфику и отличия. Изучение распространения электромагнитных волн в плазме и их отражения от поверхности плазмы представляют собой важные проблемы, необходимые для успешной радиосвязи как в пределах Земли, так и с космическими аппаратами. От присутствия колебательных и волновых процессов во многом зависит устойчивость плазмы в ряде термоядерных установок и газоразрядных устройств. Большой интерес исследователей привлекают нелинейные волны – солитоны, обнаруженные в плазменных средах.                               

      Рассмотрим наиболее простой вид электронных колебаний в плазме – ленгмюровские колебания. Предположим, что температура плазмы мала, и тепловым движением заряженных частиц  можно пренебречь. Пренебрежем также столкновениями частиц между собой.

                                                                    Рис.1

Будем считать ионы неподвижными, и допустим, что произошло смещение электронного слоя (рис.1). Избыточный заряд в возмущенном слое выразится в виде:

                       

Где n0 – невозмущенная электронная концентрация, S – площадь данного слоя.

Для возмущенного электронного слоя справедливо уравнение Пуассона:

                      

В одномерном случае уравнение запишется в форме:

                     

После интегрирования данного выражения напряженность электрического поля в промежутке от 0 до  x0  запишется в виде:           

                     

          Запишем уравнение движения электрона под действием электрической силы:

                     

Если поделить все выражение на массу электрона, то можно прийти к уравнению колебаний:

                    

Колебания происходят с частотой плазменных или ленгмюровских колебаний p:

                   

В более сложном выводе с использованием уравнений гидродинамики присутствует концентрация плазмы в виде:

                                 

Где n – возмущенное значение концентрации при наличии колебаний. Для уравнения относительно  n  также получается уравнение колебаний с плазменной частотой  p:

                 

Данные продольные колебания электронной плотности можно наблюдать в различных видах газовых разрядов при подаче на один из электродов импульса возбуждения.

       В некоторых случаях в плазме могут возбуждаться продольные волны, имеющие схожесть с волнами в газовых средах, поэтому приведем краткое описание вывода волн в газе.  В качестве исходных обычно используются уравнение непрерывности и уравнение Эйлера:            

                               

Где -плотность газа, -его скорость, p -давление газа. Для вывода обычно используется потенциал   , определяемый из уравнения:

                              

Окончательные уравнения записываются для данного потенциала, или для возмущенного значения давления  p  ():                                    

                              

В одномерном случае приходят к волновому уравнению для возмущенного значения давления:

                

Для скорости звука в газе записывается выражение:

                                  

Где m0 –масса атома, Cp –теплоемкость при постоянном давлении,  CV –теплоемкость при постоянном объеме.                

                                                                 

       Рассмотрим теперь волны в плазме при учете теплового движения электронов. Пренебрежем электрон-ионными столкновениями. Запишем уравнение движения электрона при наличии слагаемого, учитывающего градиент давления:

                     

При использовании выражения для давления идеального газа, слагаемое с градиентом давления будет записано в виде:

                                 

Для электрического поля в одномерном случае, как и при ленгмюровских волнах, можно записать:             

                               

                    

Также используется уравнение непрерывности в одномерном случае:

                            

                                 

Окончательный вид уравнения для возмущенного значения концентрации плазмы n будет следующий:

                                           

Полученное выражение является уравнением типа Клейна–Гордона, в котором присутствует плазменная частота p и множитель сходный с тепловой скоростью электронов   ve :

                                                      

Решение данного уравнения ищется в виде:

                 

Где   -частота и k –волновое число.

       После подстановки в волновое уравнение можно прийти к следующему дисперсионному соотношению:

                 

Обычно выражение данного типа устанавливает связь между частотой и волновым вектором в волне. С помощью дисперсионного уравнения можно найти выражения для фазовой и групповой скоростями волны. Фазовая скорость волны определяется по формуле:    

                   

                                                           

Для  групповой скорости записывается  выражение:

                

                              

      Показатель преломления и диэлектрическая проницаемость плазмы выражается в виде:  

                 

                 

Следует заметить, что последнее выражение имеет смысл только при частотах больших плазменной частоты   >p .

                              

       Рассмотрим распространение электромагнитных волн через плазму. Предположим, что плазма однородная и пренебрежем электрон-ионными столкновениями. Допустим, что на границу плазмы из вакуума падает плоская поляризованная электромагнитная волна (рис.2).

   

                                                                Рис.2

                                                                                                                 

Уравнение движения электрона в поле волны можно записать в виде:                    

                    

Электрическое поле в волне представляется в виде:

                   

Подставим выражение для поля в уравнение движения:

                   

Зависимость для координаты электрона запишется следующим образом:

                  

В результате электрон будет совершать колебательные движения с частотой электрического поля волны.

              

       Представим электрический дипольный момент единицы объема:

                                  

Его связь с электрическим полем и диэлектрической проницаемостью будет следующей:

                   

Запишем выражение для диэлектрической проницаемости:

                                       

                                      

Показатель преломления выражается в виде:        

                   

Ввиду данных формул для диэлектрической проницаемости плазмы и ее показателя преломления можно выделить два случая:

1)  - в плазме распространяются электромагнитные волны и диэлектрическая проницаемость принимает значения в диапазоне от 0 до 1 (рис.3), что свойственно исключительно плазменным средам. Следует напомнить, что выражение для показателя преломления в оптически прозрачных твердых средах больше единицы.

                                                                          Рис.3

                                                                                                                      

2)  - волны в плазме затухают и распространяются на глубину скин-слоя:

                  

Величина электрического поля в плазме при этом будет уменьшаться по закону:

                             

От границы плазмы в этом случае происходит отражение электромагнитной волны. Данный эффект имеет большое значение при отражении радиоволн от ионосферы.

       Найдем дисперсионное соотношение и скорости электромагнитных волн (фазовую и групповую). Запишем выражение для волнового вектора:

                  

Подставим его в соотношение для диэлектрической проницаемости плазмы:

                 

                 

В результате дисперсионное уравнение будет иметь вид:                    

                         

Для фазовой и групповой скоростей можно получить соотношения:                             

                                                               

                               

При сравнении с подобными выражениями для волн в плазме можно обратить внимание, что вместо тепловой скорости  ve  в данных формулах присутствует скорость света  с.

                                                                                       


невозмущенная плазма

избыток электронов

x

x

x

x0

отсутствие электронов

By

kz

Ex

y

z

x

плазма

вакуум

волна

=n2

1

0

p


 

А также другие работы, которые могут Вас заинтересовать

11585. ЛАБОРАТОРНАЯ РАБОТА №1. ЗНАКОМСТВО С МАТКАДОМ 231.29 KB
  ЛАБОРАТОРНАЯ РАБОТА №1. ЗНАКОМСТВО С МАТКАДОМ Найдите на рабочем столе ярлык Маткад щелкните мышью и войдите в пакет. Обратите внимание на то что вся работа в Маткаде должна проводиться на латинском английском алфавите. Рис.1 Окна после запуска После за
11586. ВЕКТОРЫ И МАТРИЦЫ 39.75 KB
  Лабораторная работа Векторы и матрицы Общие сведения Задачи линейной алгебры решаемые в MathCAD можно условно разделить на два класса. Первый это простейшие матричные операции которые сводятся к определенным арифметическим действиям над элементами матрицы. Они реал...
11587. Форматирование текста в HTML-документах 66 KB
  ЛАБОРАТОРНАЯ РАБОТА № 21 Тема: Форматирование текста в HTMLдокументах Цель: ознакомить студентов с HTML основными понятиями структурой документа. Задание Подготовьте бланк для HTMLкода Вашего резюме. Для этого следует: выполнить команду Пуск Програм
11588. Исследование транзисторного генератора с внешним возбуждением 396.42 KB
  Исследование транзисторного генератора с внешним возбуждением Цель работы: Ознакомление с принципом работы и расчетом электронного режима транзисторного генератора с внешним возбуждением; изучение формы импульсов коллекторного тока при различных значениях нап...
11589. Дифференцирующие и интегрирующие RC-цепи 459.22 KB
  Дифференцирующие и интегрирующие RCцепи Цель работы: Анализ переходных процессов в простейших RCцепях а также условий дифференцирования и интегрирования сигналов с помощью этих цепей. Изучение методов расчета и анализа данных цепей. Исходные данные: Принимаем р
11590. Исследование температурной зависимости сопротивления металла и полупроводника 185.5 KB
  ЛАБОРАТОРНАЯ РАБОТА № 1 Исследование температурной зависимости сопротивления металла и полупроводника. Цель работы: экспериментально проверить основной закон динамики вращательного движения. Построить график зависимости углового ускорения от вращающего моме...
11591. Определение момента инерции тел методом крутильных колебаний 160 KB
  Лабораторная работа № 5 Определение момента инерции тел методом крутильных колебаний Цель работы: а определить момент инерции тела относительно оси проходящей через центр массы тела; б проверить теорему Штейнера. Приборы и принадлежности: трифилярный по...
11592. Определение отношения теплоемкостей газа при постоянном давлении и постоянном объеме методом Клемана - Дезорма 52 KB
  ЛАБОРАТОРНАЯ РАБОТА № 12 Определение отношения теплоемкостей газа при постоянном давлении и постоянном объеме методом Клемана Дезорма Цель работы: 1 .Ознакомиться со способами осуществления различных термодинамических процессов. 2 Определение соотношения При...
11593. Определение момента инерции тел с помощью унифилярного подвеса 69.5 KB
  ЛАБОРАТОРНАЯ РАБОТА № 13 Определение момента инерции тел с помощью унифилярного подвеса Цель работы: определить моменты инерции различных тел методом крутильных коле баний. Пронаблюдать зависимость момента инерции от массы тела и ее распределения относитель