19236

УСТОЙЧИВОСТЬ ПЛАЗМЫ

Лекция

Физика

Устойчивость плазмы Вопросы устойчивости плазмы важны для установок содержащих низкотемпературную и высокотемпературную плазму ввиду того что потеря устойчивости может означать разрушение плазмы исчезновение рабочих параметров и т.д. При проблеме управляемого т

Русский

2013-07-11

98.5 KB

7 чел.

Устойчивость плазмы

Вопросы устойчивости плазмы важны для установок содержащих низкотемпературную и высокотемпературную плазму, ввиду того что потеря устойчивости может означать разрушение плазмы, исчезновение рабочих параметров и т.д. При проблеме управляемого термоядерного синтеза, ставящей своей целью нагрев плазмы до температур порядка Т=107-108 К, возник целый ряд неустойчивостей, препятствующих эффективному нагреву плазмы и вызывающих различные виды потери энергии и частиц  плазмы. Основными видами неустойчивостей плазмы являются следующие: 1) магнитогидродинамические (желобковая, токовые), 2) кинетические (пучковая, конусная, дрейфово-конусная). Первый вид неустойчивостей связан с изменением формы плазмы, второй вид обусловлен отклонением ее распределения по скоростям частиц от равновесного распределения. Важной величиной для определения равновесия плазмы является параметр  :

                       

Данное выражение является отношением газокинетического давления и магнитного. В ряде установок по получению горячей плазмы внешняя граница плазмы и вакуума испытывает воздействие этих давлений. Для устойчивости границы плазмы данный параметр должен принимать значения в диапазоне <1, т.е. магнитное давление, как правило,  превосходит газокинетическое.

      Рассмотрим магнитогидродинамические неустойчивости плазмы. Желобковая неустойчивость впервые была обнаружена в первых термоядерных установках – пробкотронах. В плазменных установках данного вида требовалось создать плазму цилиндрической конфигурации, расположенную в магнитном поле, направленном вдоль оси системы. Рассмотрим границу плазменного столба (рис.1). Пунктиром показаны контуры невозмущенной плазмы. Предположим, что внутри плазмы расположена тонкая магнитная трубка.  В силу вмороженности силовых линий магнитного поля при достаточно высокой проводимости, данная трубка может всплывать к поверхности плазмы под действием газокинетического давления.

                                                             Рис.1

                                                                                                                                               Вблизи поверхности плазмы такая трубка может создать поверхность, напоминающую чередование желобков и выступов (рис.1). Теоретическое рассмотрение данного явления приводит к условию устойчивости границы в виде:

                      

Данный интеграл берется вдоль данной магнитной трубки, а варьирование производится вдоль радиуса. Неравенство означает, что для устойчивости границы плазмы величина магнитного поля B  должна возрастать при увеличении расстояния от оси установки.

      Если на границе поверхности плазмы образуется выступ (рис.2), то могут произойти следующие явления. Поляризация зарядов приводит к появлению электрического поля E, направленного перпендикулярно к магнитному полю  B. В скрещенных полях E и B начинается дрейф частиц обоих знаков вдоль радиуса. В результате размеры данных выступов будут увеличиваться за счет дрейфа.

              

                                                       Рис.2

Оба вида рассмотренных неустойчивостей препятствуют получению устойчивой плазмы в магнитных ловушках. Для стабилизации плазмы в установках данного типа были созданы дополнительные магнитные поля, обеспечивающие рост суммарного магнитного поля при удалении от оси системы. При наличии данных полей происходит подавление неустойчивостей и граница плазмы становится стабильной.                                                                                                                             

      Другой вид гидродинамических неустойчивостей – токовые возникают при прохождении через плазму значительных токов. В установках по получению термоядерной плазмы токи достигают диапазона  I=104-106 A. Рассмотрим основные виды токовых неустойчивостей: “перетяжки”, “змейки” и “винтовые неустойчивости”.

      

             

1) “Перетяжки”. Предположим, что плазма имеет цилиндрическую форму и ток идет по оболочке плазмы. Пусть в некотором месте образовалось небольшое уменьшение диаметра – перетяжка (рис.3а). В плазме при сильных токах будет иметь место пинч-эффект или сжатие шнура плазмы под действием токов. Магнитному давлению тока    внутри плазмы будет противодействовать газокинетическое давление , но газ будет перетекать из области перетяжки в обе стороны, и перетяжка будет развиваться. Для стабилизации перетяжек в установке создается продольное магнитное поле Bz, которое при наличии высокой проводимости можно считать вмороженным в плазму (рис.3б). При сжатии плазмы в месте перетяжки, давлению внешнего магнитного поля B будет противодействовать давление постоянного магнитного поля Bz, которое будет стремиться вернуть первоначальную форму плазмы. В силу вмороженности силовые линии поля Bz не покинут плазму и обеспечат стабильность плазменного шнура от данных неустойчивостей.

                              Рис.3              а)                                               б)       

         

2) “Змейки”.  Другим видом токовых неустойчивостей являются так называемые “змейки” (рис.4). В результате развития данной неустойчивости шнур плазмы приобретает изгиб (рис.4а). С внутренней стороны изгиба шнура давление магнитного поля B будет больше, чем с наружной. Поэтому данная неустойчивость будет увеличиваться, не находя никакого противодействия. Для стабилизации неустойчивости вплотную к стенке камеры (1) располагается массивный медный кожух (2) (рис.4б). В этом кожухе будут наводиться индукционные токи Фуко, причем с направлением противоположным относительно  тока, идущего через плазму. Взаимодействие данных двух токов будет приводить к отталкиванию изогнувшегося шнура плазмы от стенки медного кожуха. В результате будет осуществляться стабилизация шнура в случае неустойчивостей данного типа.

          

  

                                                                                       

     Рис.4         а)                                                     б)

3) Винтовые неустойчивости. Критерий Крускала-Шафранова. Для многих установок, в первую очередь для токамаков, большое значение имеет стабилизация винтовых неустойчивостей плазменного шнура. В торообразной конфигурации токамака существуют два поля: осевое (тороидальное)  B  и поле тока  B  (рис.5). Результирующее магнитное поле является спиралеобразным с шагом   , где r –малый радиус тора. При наличии высокой проводимости плазмы и эффекте вмороженности силовых линий шнур плазмы может приобрести такую же спиральную конфигурацию, как и магнитное поле. Чтобы этого не произошло, шаг спирали  h  должен превышать длину установки  L:

                             

Подставим выражение для  h в неравенство:

                            

                            

Выражение q(r) является запасом устойчивости относительно влияния винтовых неустойчивостей. Данный критерий имеет название Крускала-Шафранова в честь теоретиков впервые получивших данное выражение для плазмы токамаков.

                                                                       Рис.5

                                                                                                                    

     

                        

       Кинетические неустойчивости в плазме, как правило, связаны с отклонением функции распределения частиц по скоростям в плазме от равновесного максвелловского распределения. В качестве примера можно привести магнитную ловушку, в которой ввиду наличия конуса потерь, отсутствуют электроны в диапазоне малых поперечных энергий. На рис.6 изображена функция (2), которая соответствует распределению по поперечным энергиям, а пунктир (1) показывает вид функции в диапазоне низких энергий в условии равновесия. Распределение по энергиям (2) похоже на ситуацию с инверсной заселенностью энергетических уровней для лазерных сред.

                                                                       

                                                               Рис.6

Механизм возникновения неустойчивости в данном случае связан с нарастанием переменного электрического поля в электромагнитной волне, которая воздействует на заряженные частицы. Как следствие этого, происходит увеличение коэффициента диффузии относительно его классического значения:

                   

                    

В результате коэффициент диффузии становится пропорциональным квадрату электрического поля, и диффузия приобретает аномальный характер.

+

    

+

    

+

    

z

z

B

I

B

I

I

I

I

1

2

I

Pм

pм

B

R

B

r

2

1

0

f()


 

А также другие работы, которые могут Вас заинтересовать

82718. ОПЕРАЦІЙНА СИСТЕМА WINDOWS 1.66 MB
  Найважливіші програми на комп’ютері – програми операційної системи. Операційна система забезпечує взаємодію пристроїв і програм при виконанні роботи, створює засоби керування комп’ютером. Операційна система дозволяє людині не вникати в тонкощі роботи прикладних програм, апаратної частини...
82719. Проектирования и внедрения интеграционного решения между биллинговыми системами и информационной системой Microsoft Dynamics Axapta 4 2.6 MB
  В приложениях к пояснительной записке представлены: инструкция пользователя (приложение А), листинг основных классов и методов интерфейса с комментариями (приложение Б) и листинг макроса, являющегося промежуточным звеном для передачи данных из некоторых биллинговых систем в MDAX4 (приложение В).
82720. Повышение технико-эксплуатационных и технико-экономических показателей работы дилерского центра ООО «КМ/ч-Череповец» 794.5 KB
  В течение всего срока эксплуатации эта система должна обеспечивать в пределах требований клиентуры и технических требований автомобиля его исправность безотказность и максимальный коэффициент технической готовности а также минимальные затраты времени клиента на поддержку и восстановление работы его автомобиля.
82721. ВИКОРСТАННЯ ФОРМУЛ ТА ФУНКЦІЙ В MS EXCEL 346.5 KB
  Як операнди можуть виступати константи різноманітних типів посилання на клітинки або області таблиці імена діапазонів. Оператор діапазону двокрапка: повертає посилання на всі клітинки розташовані між двома вказаними адресами клітинок включаючи ці клітинки.
82722. Разработка средств ведения электронной библиотеки для корпоративной системы поддержки учебного процесса 648 KB
  В новом тысячелетии наблюдается увеличение интереса к корпоративному e-Learning-обучению. Это относится не только к образовательным учреждениям. Крупнейшие мировые корпорации видят в e-Learning эффективное средство для решения самого широкого круга задач.
82723. Проектирование подстанции «1 водоподъем» ОАО «Уральская Сталь» 14.27 MB
  Главная схема электрических соединений подстанции является тем основным элементом, который определяет все свойства, особенности и техническую характеристику подстанции в целом. При выборе главной схемы неотъемлемой частью ее построения являются обоснование и выбор параметров оборудования...
82724. Расчетно-кассовое обслуживание корпоративных клиентов (на примере ЗАО МКБ «МоскомПриватбанк») 397 KB
  Настоящий этап развития платежной системы характеризуется широким внедрением новых форм расчетов и использований новых совершенных банковских технологий отвечающих мировым стандартом и принципам. Расчеты включают с одной стороны условия и порядок осуществления платежей выработанные практикой...
82725. Анализ социально-экономического развития ФРГ в 1950 – 1960-х годах 6.3 MB
  Социально-экономическая ситуация которая сложилась в Западной Германии в 50-60е гг. Экономика Германии находилась в разрухе и сильном кризисе. Реформы проведенные в Западной Германии в 1948 г. явились в своем роде экономическим экспериментом который прошел в полнее удачно принеся Германии...
82726. Расчет электропривода металлорежущего станка токарной групппы 912 KB
  Металлорежущие станки токарной группы относятся к наиболее распространенным станкам и широко применяется на предприятиях машиностроения. На токарных станках производится обработка наружных внутренних и торцевых поверхностей тел вращения цилиндрической конической и фасонной формы а также прорезка...