19236

УСТОЙЧИВОСТЬ ПЛАЗМЫ

Лекция

Физика

Устойчивость плазмы Вопросы устойчивости плазмы важны для установок содержащих низкотемпературную и высокотемпературную плазму ввиду того что потеря устойчивости может означать разрушение плазмы исчезновение рабочих параметров и т.д. При проблеме управляемого т

Русский

2013-07-11

98.5 KB

2 чел.

Устойчивость плазмы

Вопросы устойчивости плазмы важны для установок содержащих низкотемпературную и высокотемпературную плазму, ввиду того что потеря устойчивости может означать разрушение плазмы, исчезновение рабочих параметров и т.д. При проблеме управляемого термоядерного синтеза, ставящей своей целью нагрев плазмы до температур порядка Т=107-108 К, возник целый ряд неустойчивостей, препятствующих эффективному нагреву плазмы и вызывающих различные виды потери энергии и частиц  плазмы. Основными видами неустойчивостей плазмы являются следующие: 1) магнитогидродинамические (желобковая, токовые), 2) кинетические (пучковая, конусная, дрейфово-конусная). Первый вид неустойчивостей связан с изменением формы плазмы, второй вид обусловлен отклонением ее распределения по скоростям частиц от равновесного распределения. Важной величиной для определения равновесия плазмы является параметр  :

                       

Данное выражение является отношением газокинетического давления и магнитного. В ряде установок по получению горячей плазмы внешняя граница плазмы и вакуума испытывает воздействие этих давлений. Для устойчивости границы плазмы данный параметр должен принимать значения в диапазоне <1, т.е. магнитное давление, как правило,  превосходит газокинетическое.

      Рассмотрим магнитогидродинамические неустойчивости плазмы. Желобковая неустойчивость впервые была обнаружена в первых термоядерных установках – пробкотронах. В плазменных установках данного вида требовалось создать плазму цилиндрической конфигурации, расположенную в магнитном поле, направленном вдоль оси системы. Рассмотрим границу плазменного столба (рис.1). Пунктиром показаны контуры невозмущенной плазмы. Предположим, что внутри плазмы расположена тонкая магнитная трубка.  В силу вмороженности силовых линий магнитного поля при достаточно высокой проводимости, данная трубка может всплывать к поверхности плазмы под действием газокинетического давления.

                                                             Рис.1

                                                                                                                                               Вблизи поверхности плазмы такая трубка может создать поверхность, напоминающую чередование желобков и выступов (рис.1). Теоретическое рассмотрение данного явления приводит к условию устойчивости границы в виде:

                      

Данный интеграл берется вдоль данной магнитной трубки, а варьирование производится вдоль радиуса. Неравенство означает, что для устойчивости границы плазмы величина магнитного поля B  должна возрастать при увеличении расстояния от оси установки.

      Если на границе поверхности плазмы образуется выступ (рис.2), то могут произойти следующие явления. Поляризация зарядов приводит к появлению электрического поля E, направленного перпендикулярно к магнитному полю  B. В скрещенных полях E и B начинается дрейф частиц обоих знаков вдоль радиуса. В результате размеры данных выступов будут увеличиваться за счет дрейфа.

              

                                                       Рис.2

Оба вида рассмотренных неустойчивостей препятствуют получению устойчивой плазмы в магнитных ловушках. Для стабилизации плазмы в установках данного типа были созданы дополнительные магнитные поля, обеспечивающие рост суммарного магнитного поля при удалении от оси системы. При наличии данных полей происходит подавление неустойчивостей и граница плазмы становится стабильной.                                                                                                                             

      Другой вид гидродинамических неустойчивостей – токовые возникают при прохождении через плазму значительных токов. В установках по получению термоядерной плазмы токи достигают диапазона  I=104-106 A. Рассмотрим основные виды токовых неустойчивостей: “перетяжки”, “змейки” и “винтовые неустойчивости”.

      

             

1) “Перетяжки”. Предположим, что плазма имеет цилиндрическую форму и ток идет по оболочке плазмы. Пусть в некотором месте образовалось небольшое уменьшение диаметра – перетяжка (рис.3а). В плазме при сильных токах будет иметь место пинч-эффект или сжатие шнура плазмы под действием токов. Магнитному давлению тока    внутри плазмы будет противодействовать газокинетическое давление , но газ будет перетекать из области перетяжки в обе стороны, и перетяжка будет развиваться. Для стабилизации перетяжек в установке создается продольное магнитное поле Bz, которое при наличии высокой проводимости можно считать вмороженным в плазму (рис.3б). При сжатии плазмы в месте перетяжки, давлению внешнего магнитного поля B будет противодействовать давление постоянного магнитного поля Bz, которое будет стремиться вернуть первоначальную форму плазмы. В силу вмороженности силовые линии поля Bz не покинут плазму и обеспечат стабильность плазменного шнура от данных неустойчивостей.

                              Рис.3              а)                                               б)       

         

2) “Змейки”.  Другим видом токовых неустойчивостей являются так называемые “змейки” (рис.4). В результате развития данной неустойчивости шнур плазмы приобретает изгиб (рис.4а). С внутренней стороны изгиба шнура давление магнитного поля B будет больше, чем с наружной. Поэтому данная неустойчивость будет увеличиваться, не находя никакого противодействия. Для стабилизации неустойчивости вплотную к стенке камеры (1) располагается массивный медный кожух (2) (рис.4б). В этом кожухе будут наводиться индукционные токи Фуко, причем с направлением противоположным относительно  тока, идущего через плазму. Взаимодействие данных двух токов будет приводить к отталкиванию изогнувшегося шнура плазмы от стенки медного кожуха. В результате будет осуществляться стабилизация шнура в случае неустойчивостей данного типа.

          

  

                                                                                       

     Рис.4         а)                                                     б)

3) Винтовые неустойчивости. Критерий Крускала-Шафранова. Для многих установок, в первую очередь для токамаков, большое значение имеет стабилизация винтовых неустойчивостей плазменного шнура. В торообразной конфигурации токамака существуют два поля: осевое (тороидальное)  B  и поле тока  B  (рис.5). Результирующее магнитное поле является спиралеобразным с шагом   , где r –малый радиус тора. При наличии высокой проводимости плазмы и эффекте вмороженности силовых линий шнур плазмы может приобрести такую же спиральную конфигурацию, как и магнитное поле. Чтобы этого не произошло, шаг спирали  h  должен превышать длину установки  L:

                             

Подставим выражение для  h в неравенство:

                            

                            

Выражение q(r) является запасом устойчивости относительно влияния винтовых неустойчивостей. Данный критерий имеет название Крускала-Шафранова в честь теоретиков впервые получивших данное выражение для плазмы токамаков.

                                                                       Рис.5

                                                                                                                    

     

                        

       Кинетические неустойчивости в плазме, как правило, связаны с отклонением функции распределения частиц по скоростям в плазме от равновесного максвелловского распределения. В качестве примера можно привести магнитную ловушку, в которой ввиду наличия конуса потерь, отсутствуют электроны в диапазоне малых поперечных энергий. На рис.6 изображена функция (2), которая соответствует распределению по поперечным энергиям, а пунктир (1) показывает вид функции в диапазоне низких энергий в условии равновесия. Распределение по энергиям (2) похоже на ситуацию с инверсной заселенностью энергетических уровней для лазерных сред.

                                                                       

                                                               Рис.6

Механизм возникновения неустойчивости в данном случае связан с нарастанием переменного электрического поля в электромагнитной волне, которая воздействует на заряженные частицы. Как следствие этого, происходит увеличение коэффициента диффузии относительно его классического значения:

                   

                    

В результате коэффициент диффузии становится пропорциональным квадрату электрического поля, и диффузия приобретает аномальный характер.

+

    

+

    

+

    

z

z

B

I

B

I

I

I

I

1

2

I

Pм

pм

B

R

B

r

2

1

0

f()


 

А также другие работы, которые могут Вас заинтересовать

6208. Применение производной в исследовании функций 123 KB
  Применение производной в исследовании функций. Возрастание и убывание функций. Теорема (критерий монотонности дифференцируемой функции). Пусть функция непрерывна на промежутке и дифференцируема во всех его внутренних точках. Тог...
6209. Стабильность лекарственных средств и методы ее определения. Процессы, происходящие при хранении лекарств. Сроки годности лекарственных веществ 65.5 KB
  Стабильность лекарственных средств и методы ее определения. Процессы, происходящие при хранении лекарств. Сроки годности лекарственных веществ Стабильность (устойчивость) - это фактор качества лекарственных средств. Критерием стабильности лека...
6210. Правила представления результатов исследования. Оценка медицинских публикаций 2.86 MB
  Правила представления результатов исследования. Оценка медицинских публикаций Разновидность лекции: аудиторная. Значение темы лекции благодаря развитию доказательной медицины и информационных технологий появилась возможность основывать клиничес...
6211. Оздоровительный пеший поход выходного дня как способ отдыха и проведения свободного времени 251.58 KB
  Актуальность темы в том, что в современном мире человек зачастую прибывает в стрессовой ситуации. Опасность физической, умственной и психологической перегрузки существует практически постоянно у каждого из нас. Особенно это актуально для жи...
6212. Организация текущего хранения. Номенклатура дел 81.5 KB
  Организация текущего хранения Номенклатура дел После исполнения документы определенное время хранятся в организации. Для того чтобы их можно было быстро находить и использовать, необходима систематизация исполненных документов, группировка их ...
6213. Составление программы для решения системы уравнений методом Гаусса 1.61 MB
  Введение Последние десятилетия характеризуются бурным развитием вычислительной техники.Расширяются области применения вычислительных машин и совершенствуются методы их использования.Созданы универсальные языки программирования и разработ...
6214. Производство, издержки, прибыль 69 KB
  Производство, издержки, прибыль. Цели изучения темы: уяснение сущности процесса производства, постоянных и переменных факторов производства, понимание критериев классификации издержек, получение навыков подсчета издержек на производство товаров. Осн...
6215. Сифилис. Общие сведения и клиническая форма протекания венерических заболеваний 115.5 KB
  Общие сведения о венерических заболеваниях. Венерология (от латинского Venus - Венера, богиня любви, и греческого Logos - наука) изучает венерические или приобретаемые преимущественно (но не исключительно) половым путём инфекционные болезни. Термин...
6216. Философия Б. Спинозы и Г.В. Лейбница: проблема единства и множественности субстанций 108.5 KB
  Философия Б. Спинозы и Г.В. Лейбница: проблема единства и множественности субстанций. Вопрос 1 Философия логического монизма Б. Спинозы. В природе ничто не случайно, и все вещи обусловлены в существовании и определённых действиях необходимостью боже...