19242

АДИАБАТИЧЕСКИЕ ИНВАРИАНТЫ ДЛЯ ДВИЖЕНИЯ ЧАСТИЦ В МАГНИТНОМ ПОЛЕ

Лекция

Физика

Лекция 5 Адиабатические инварианты для движения частиц в магнитном поле Инвариантность магнитного момента частицы во времени инвариантность частицы в постоянном во времени и неоднородном в пространстве магнитном пол инвариантность величины vl ...

Русский

2013-07-11

967.5 KB

20 чел.

Лекция 5

Адиабатические инварианты для движения частиц в магнитном поле

Инвариантность магнитного момента частицы во времени, инвариантность частицы в постоянном во времени и неоднородном в пространстве магнитном пол, инвариантность величины vl

Как известно из механики, любая механическая система, совершающая финитное движение, например, математический маятник или груз, подвешенный на пружинке, имеет траекторию, занимающую в фазовом пространстве ограниченную область (в простейшем случае одномерного движения это плоскость обобщенного импульса и обобщенной координаты, рис.5.1). Если энергия этой системы сохраняется, то траектория, отвечающая заданной энергии W, является замкнутой. Охватываемая этой траекторией площадь, очевидно, является точным интегралом движения. Существенно, что приближенное сохранение этой площади имеет место и том случае, когда энергия системы меняется со временем под действием какого-либо возмущения (например, слабого трения, или изменения длины маятника и тому подобное), но это изменение медленное по сравнению с периодом невозмущенного движения. Теперь эта площадь уже не является точным интегралом движения, и сохранение имеет место лишь в среднем по периоду невозмущенного движения. В этом случае говорят о сохранении адиабатического инварианта. По размерности эта площадь пропорциональна произведению средней за период энергии частицы на величину этого периода:

.    

Поэтому, если при изменении какого-либо параметра системы период движения уменьшается (например, для математического маятника период, как известно, определяется соотношением , и период уменьшается с уменьшением длины маятника), то её энергия в среднем возрастает.

Принцип адиабатической инвариантности находит важные приложения к проблеме удержания плазмы по необходимости траектории частиц должны быть финитными. Рассмотрим кратко некоторые приложения этого принципа для случая движения частиц в магнитном поле.

Инвариантность магнитного момента частицы во времени

Если заряженная частица движется в однородном, но меняющемся во времени магнитном поле, то ее ларморовский радиус и перпендикулярная скорость будут меняться. Это происходит потому, что индуцированное меняющимся магнитным полем электрическое будет ускорять (или замедлять) частицу.

Выберем цилиндрическую систему координат так, чтобы вектор напряженности магнитного поля был параллелен оси z этой системы (см. рис.5.2), тогда , где  - соответствующий единичный вектор.

Из закона индукции

,   

находим

.         

Подставляя теперь эти поля в оставшиеся уравнения Максвелла, обнаруживаем, что

        

Поэтому уравнения Максвелла удовлетворяются тождественно при выборе линейной зависимости напряженности магнитного поля от времени, так что:

,       

где  - постоянная величина (скорость изменения поля), которая может быть как положительной (поле растет), так и отрицательной (поле убывает);  - начальное значение поля.

Полученное решение уравнений Максвелла точное, но несколько искусственное: трудно представить себе ситуацию, когда магнитное поле нарастает сразу во всем пространстве. На практике часто используют приближенное решение, считая, что порождающие магнитное поле токи меняются настолько медленно, что токами смещения (и, тем самым, волновым процессом установления поля) можно пренебречь. Тогда

формулы

,       

приближенно описывают распределение полей при произвольной зависимости В(t), медленной на масштабах времени t~L/c, где L - размер области, занимаемой полем.

Для иллюстрации сохранения   магнитного момента или поперечного адиабатического инварианта при движении частицы в переменном магнитном поле ограничимся грубым приближением, считая, что радиальная скорость тождественно равна нулю и радиус орбиты постоянный. В этом приближении уравнения движения сводятся к виду

,         

и, как не трудно проверить, дают соотношение

.         

Это означает, что отношение

         

сохраняется. Переобозначив v v, получим окончательно

.         

Грубое приближение, использованное выше, вовсе не обязательно. Детальные расчеты показывают сохранение в общем случае в условиях применимости адиабатического приближения. Для иллюстрации «качества» сохранения  на рис.5.3 приведены результаты точных численных расчетов этого параметра для частного вида осциллирующего поля.

Инвариантность частицы в постоянном во времени и неоднородном в пространстве магнитном поле

Когда поле В постоянное во времени, но медленно меняется в пространстве, то при переходе частицы из слабого поля в более сильное на нее действует сила (рис.5.4.):

;   (5.1)

Здесь

.    (5.2)

После преобразования вдоль траектории получим

.   (5.3)

Так как полная энергия при движении в магнитном поле сохраняется

,

то получаем

;       (5.4)

что возможно, только если

 =const.          (5.5)

Неточность, допущенная при выводе, в данном случае связана с тем, что изменения В в перпендикулярном направлении не учтены. Это допустимо лишь при медленном изменении. Обобщая уравнения (5.1) и (5.5), можно сказать, что магнитный момент представляет собой адиабатический инвариант движения заряженной частицы в медленно изменяющемся магнитном поле.

Отсюда можно сделать несколько интересных выводов. Из вполне очевидных алгебраических выкладок

    

следует, что магнитный поток, пронизывающий ларморовский кружок, адиабатически постоянен. Это обстоятельство приводит к выводу, что при изменении магнитного поля ларморовский радиус изменяется по закону:

,         

то есть значительно медленнее, чем в случае постоянной поперечной скорости.

Аналогично получим:

,        

то есть момент количества движения частицы также остается адиабатически постоянным.

Инвариантность величины vl

Рассмотрим движение частицы в ящике с упругими стенками (рис.5.5). Пусть скорость частицы, направленная вдоль дна ящика, равна v, а одна из стенок ящика движется со скоростью U<<v. Для заряженной частицы «стенкой ящика» может быть область усиленного магнитного поля, от которой частица отражается.

При упругом отражении от движущейся стенки частица изменит скорость на величину v = 2U (считаем массу стенки бесконечной). Тогда изменение скорости частицы за одно полное колебание

,   

будет равно

.    

Так как , то получаем

    

или

.          (5.6)

Сближающиеся стенки увеличивают скорость частицы.


 

А также другие работы, которые могут Вас заинтересовать

73342. Ввод и вывод информации 1.71 MB
  Укажите наименьшую единицу измерения информации: а байт; б бит; в килобайт; г мегабайт. Выберите неверное высказывание а принтер устройство вывода информации; б CDROM устройство хранения информации; в клавиатура устройство ввода информации; г монитор устройство ввода. а передачи информации от машины человеку б передачи информации от человека машине в обработки вводимых данных г реализации алгоритмов обработки накопления и передачи информации 11.
73343. УРОК РОЗВИТКУ КОМУНІКАТИВНИХ УМІНЬ. ПІДРОЗДІЛИ СТИЛІСТИКИ: СТИЛІСТИКА МОВИ (ПРАКТИЧНА) І СТИЛІСТИКА МОВЛЕННЯ (ФУНКЦІОНАЛЬНА). СКЛАДАННЯ ПИСЬМОВОГО ТВОРУ 86.73 KB
  Подати відомості про підрозділи стилістики зокрема про стилістику мови і стилістику мовлення; вдосконалювати вміння логічно послідовно викладати свої думки на письмі враховуючи особливості стилю мовлення та добираючи відповідні стилістичні засоби; виховувати любов та повагу до рідної землі культурних традицій рідного народу...
73344. Розпад світової колоніальної системи. Японія у другій половині XX — на початку XXI столыття 104.96 KB
  Характеризувати етапи деколонізації процес здобуття незалежності народами Азії та Африки шляхи розвитку незалежних держав азійського та африканського регіонів; пояснювати суть японського економічного дива визначити особливості розвитку Японії наприкінці XX на початку XXI ст...
73345. Объекты графического редактора 285.25 KB
  Цели урока: Обучающая: познакомить с инструментом Штамп; формировать навыки рисования с помощью графического редактора; Развивающая: развивать внимание умение анализировать информацию и делать выводы развивать творческие способности учеников. Тип урока: комбинированный урок. Время урока: 40 минут.
73347. Урок на тему: «Food» 356.14 KB
  The trin crries Food. nd tody we’ll Lerner’s outcomes revise the Food nmes red trnslte prctice nd differentite them mke up sentences nd guess the riddles So let’s strt our journey Wrming up T: Imgine you re in the foodtrin. t the blckbord you cn see some food nmes.
73350. Звук ч, позначення його буквою Ч ч 138.84 KB
  Голосні та приголосні звуки Чим відрізняються приголосні звуки від голосних Як звуки позначаються на письмі Навіщо потрібно вивчати літери Щоб вміти читати слова речення тексти. Який спільний звук мають ці слова Спробуємо визначити який звук ч за звучанням. Які слова із звуком ч ви запам’ятали Які з них вказують на дію предмета Які називають один предмет а які багато предметів