19242

АДИАБАТИЧЕСКИЕ ИНВАРИАНТЫ ДЛЯ ДВИЖЕНИЯ ЧАСТИЦ В МАГНИТНОМ ПОЛЕ

Лекция

Физика

Лекция 5 Адиабатические инварианты для движения частиц в магнитном поле Инвариантность магнитного момента частицы во времени инвариантность частицы в постоянном во времени и неоднородном в пространстве магнитном пол инвариантность величины vl ...

Русский

2013-07-11

967.5 KB

22 чел.

Лекция 5

Адиабатические инварианты для движения частиц в магнитном поле

Инвариантность магнитного момента частицы во времени, инвариантность частицы в постоянном во времени и неоднородном в пространстве магнитном пол, инвариантность величины vl

Как известно из механики, любая механическая система, совершающая финитное движение, например, математический маятник или груз, подвешенный на пружинке, имеет траекторию, занимающую в фазовом пространстве ограниченную область (в простейшем случае одномерного движения это плоскость обобщенного импульса и обобщенной координаты, рис.5.1). Если энергия этой системы сохраняется, то траектория, отвечающая заданной энергии W, является замкнутой. Охватываемая этой траекторией площадь, очевидно, является точным интегралом движения. Существенно, что приближенное сохранение этой площади имеет место и том случае, когда энергия системы меняется со временем под действием какого-либо возмущения (например, слабого трения, или изменения длины маятника и тому подобное), но это изменение медленное по сравнению с периодом невозмущенного движения. Теперь эта площадь уже не является точным интегралом движения, и сохранение имеет место лишь в среднем по периоду невозмущенного движения. В этом случае говорят о сохранении адиабатического инварианта. По размерности эта площадь пропорциональна произведению средней за период энергии частицы на величину этого периода:

.    

Поэтому, если при изменении какого-либо параметра системы период движения уменьшается (например, для математического маятника период, как известно, определяется соотношением , и период уменьшается с уменьшением длины маятника), то её энергия в среднем возрастает.

Принцип адиабатической инвариантности находит важные приложения к проблеме удержания плазмы по необходимости траектории частиц должны быть финитными. Рассмотрим кратко некоторые приложения этого принципа для случая движения частиц в магнитном поле.

Инвариантность магнитного момента частицы во времени

Если заряженная частица движется в однородном, но меняющемся во времени магнитном поле, то ее ларморовский радиус и перпендикулярная скорость будут меняться. Это происходит потому, что индуцированное меняющимся магнитным полем электрическое будет ускорять (или замедлять) частицу.

Выберем цилиндрическую систему координат так, чтобы вектор напряженности магнитного поля был параллелен оси z этой системы (см. рис.5.2), тогда , где  - соответствующий единичный вектор.

Из закона индукции

,   

находим

.         

Подставляя теперь эти поля в оставшиеся уравнения Максвелла, обнаруживаем, что

        

Поэтому уравнения Максвелла удовлетворяются тождественно при выборе линейной зависимости напряженности магнитного поля от времени, так что:

,       

где  - постоянная величина (скорость изменения поля), которая может быть как положительной (поле растет), так и отрицательной (поле убывает);  - начальное значение поля.

Полученное решение уравнений Максвелла точное, но несколько искусственное: трудно представить себе ситуацию, когда магнитное поле нарастает сразу во всем пространстве. На практике часто используют приближенное решение, считая, что порождающие магнитное поле токи меняются настолько медленно, что токами смещения (и, тем самым, волновым процессом установления поля) можно пренебречь. Тогда

формулы

,       

приближенно описывают распределение полей при произвольной зависимости В(t), медленной на масштабах времени t~L/c, где L - размер области, занимаемой полем.

Для иллюстрации сохранения   магнитного момента или поперечного адиабатического инварианта при движении частицы в переменном магнитном поле ограничимся грубым приближением, считая, что радиальная скорость тождественно равна нулю и радиус орбиты постоянный. В этом приближении уравнения движения сводятся к виду

,         

и, как не трудно проверить, дают соотношение

.         

Это означает, что отношение

         

сохраняется. Переобозначив v v, получим окончательно

.         

Грубое приближение, использованное выше, вовсе не обязательно. Детальные расчеты показывают сохранение в общем случае в условиях применимости адиабатического приближения. Для иллюстрации «качества» сохранения  на рис.5.3 приведены результаты точных численных расчетов этого параметра для частного вида осциллирующего поля.

Инвариантность частицы в постоянном во времени и неоднородном в пространстве магнитном поле

Когда поле В постоянное во времени, но медленно меняется в пространстве, то при переходе частицы из слабого поля в более сильное на нее действует сила (рис.5.4.):

;   (5.1)

Здесь

.    (5.2)

После преобразования вдоль траектории получим

.   (5.3)

Так как полная энергия при движении в магнитном поле сохраняется

,

то получаем

;       (5.4)

что возможно, только если

 =const.          (5.5)

Неточность, допущенная при выводе, в данном случае связана с тем, что изменения В в перпендикулярном направлении не учтены. Это допустимо лишь при медленном изменении. Обобщая уравнения (5.1) и (5.5), можно сказать, что магнитный момент представляет собой адиабатический инвариант движения заряженной частицы в медленно изменяющемся магнитном поле.

Отсюда можно сделать несколько интересных выводов. Из вполне очевидных алгебраических выкладок

    

следует, что магнитный поток, пронизывающий ларморовский кружок, адиабатически постоянен. Это обстоятельство приводит к выводу, что при изменении магнитного поля ларморовский радиус изменяется по закону:

,         

то есть значительно медленнее, чем в случае постоянной поперечной скорости.

Аналогично получим:

,        

то есть момент количества движения частицы также остается адиабатически постоянным.

Инвариантность величины vl

Рассмотрим движение частицы в ящике с упругими стенками (рис.5.5). Пусть скорость частицы, направленная вдоль дна ящика, равна v, а одна из стенок ящика движется со скоростью U<<v. Для заряженной частицы «стенкой ящика» может быть область усиленного магнитного поля, от которой частица отражается.

При упругом отражении от движущейся стенки частица изменит скорость на величину v = 2U (считаем массу стенки бесконечной). Тогда изменение скорости частицы за одно полное колебание

,   

будет равно

.    

Так как , то получаем

    

или

.          (5.6)

Сближающиеся стенки увеличивают скорость частицы.


 

А также другие работы, которые могут Вас заинтересовать

24186. АЛЛЕРГИЯ 276 KB
  В поддержании аллергического иммунного ответа важны долговременные клетки памяти в т. Схема 1 Классификация аллергических реакций: Влмфзависимые Активные Немедленная по ДжеллКумбсу гуморальные и анафилаксия 1й тип реагины Тлмфзависимые Пассивные Отсроченная 5 ч 2й цитолиз клеточные АТ и клетки Замедленная дни 3й имм. Неклеточные структуры тканей коллагена миелина базальной мембраны почек вовлекаются соседние клетки вторично. Медиаторы: гаммаинтерферон...
24187. ПАТОЛОГИЯ ВОДНО-СОЛЕВОГО ОБМЕНА 289.5 KB
  Эфферентная часть: основной механизм регуляция почек диуреза: а Вегетативная нервная симпатическая адреналин чревный нерв снижение диуреза; б Гипоталамогипофизарная регуляция: супраоптические и паравентрикулярные ядра АДГ задний гипофиз почечные канальцы гиалуронидаза активация реабсорбции тоже снижение диуреза; в передний гипофиз АКТГ надпочечники альдостерон почечные канальцы сукцинатдегидрогеназа усиление реабсорбции Na и пассивно воды г диэнцефальный мозг адреногломерулотропин ...
24188. КИСЛОТНО-ОСНОВНОЕ СОСТОЯНИЕ 70 KB
  Начальные сдвиги и компенсаторные реакции при нарушениях КОС Нарушения КОС Сдвиг КОС Компенсация Дыхательные Ацидоз рН  рСО2 НСО3 Алкалоз рН рСО2 НСО3 Негазовые Ацидоз рН НСО3 рСО2 Алкалоз рН НСО3 рСО2 Схема 1 Работа гемоглобиновой буферной системы Легкие О2 Нв НвО2 СО2  Кровь: венозный_Нв артериальный_НвО2щелочные_продукты  Нв  ...
24189. ПАТОФИЗИОЛОГИЯ ОБМЕНА БЕЛКА И НК 374 KB
  ПАТОФИЗИОЛОГИЯ ОБМЕНА БЕЛКА И НК Роль белков в организме незаменимые аминокислоты типы синтеза белка типы патологии белкового обмена типы алиментарной недостаточности периоды голодания и особенности обмена; синдром мальадсорбции; нарушения синтеза белка в клетке; диспротеинозы; амилоидоз формы теории развития стадии; подагра. Пластическая роль белков структурная основа тканей и основа ферментов определяет их главенствующую роль в метаболизме. В отличие от жиров и углеводов полное белковое голодание даже при наличии...
24190. ПАТОФИЗИОЛОГИЯ ОБМЕНА ЖИРОВ 262.5 KB
  Виды ЛП: по убыли размера частиц и содержания триглицеридов нарастание фосфолипидов: хиломикроны ЛПОНП ЛППП и ЛПНП атерогены ЛПВП антиатерогены так как вытесняют холестерин с рецепторов клеток. Гиперплазия жировых клеток сохраняется навсегда особенно у детей и в пубертатном периоде. Стадии: жировой полоски пятна липидов в 12 мм появляются макрофаги которые накапливают липиды и превращаются в пенистые клетки фиброзной бляшки эксцентричный рост во внутренней оболочке артерий; капсула из эндотелия Тлимфоцитов пенистых...
24191. НАРУШЕНИЯ ОБМЕНА УГЛЕВОДОВ. САХАРНЫЙ ДИАБЕТ и КОМЫ 328.5 KB
  НАРУШЕНИЯ ОБМЕНА УГЛЕВОДОВ САХАРНЫЙ ДИАБЕТ и КОМЫ Пути метаболизма глюкозы точки приложения действия инсулина влияние инсулина на жировой и белковый обмен влияние инсулина на водноминеральный обмен контраинсулярные гормоны и эх эффекты классификация сахарного диабета факторы предрасположения к СД патогенез жалоб и симптомов при СД осложнения СД патогенез разных типов ком при СД клиника ком принчипы лечения различных видов ком и принципы лечения СД. При аэробном расщеплении окислительное фосфорилирование в...
24192. ПАТОФИЗИОЛОГИЯ ОБМЕНА ВИТАМИНОВ И МИКРОЭЛЕМЕНТОВ 222.5 KB
  Реабсорбция 2валентных ионов паратгормон в прямом отделе проксимального канальца угнетает а за его пределами стимулирует реабсорбцию; усиление реабсорбции также кальцитриолом снижение кальцитонином. Проявления: угнетение ВНД магнезиальный сон снижение К и Са2 клеток снижение активности дыхательного центра мышечная гипотония артериальная гипотензия снижение нервномышечной возбудимости и передачи. Проявления: увеличение нервномышечной возбудимости тремор двигательное возбуждение тахикардия аритмии сопутствующая...
24193. ГИПОКСИЯ 222.5 KB
  Схема 1 Патогенез экзогенной гипоксии Первичное снижение рО2гипервентиляцияснижение рСО2дыхательный каротидный и  алкалоз аортальный повышение чувстви рефлекс тельности дыхатель снижение дис ного центра к СО2 социации НвО2 Компенсаторный  эритропоэз...
24194. ОБЩИЙ АДАПТАЦИОННЫЙ СИНДРОМ (СТРЕСС) 63 KB
  ОБЩИЙ АДАПТАЦИОННЫЙ СИНДРОМ СТРЕСС Стадии стресса центральные механизмы стресса метаболизм стресса адаптивная и патогенная роль стресса; оксидативный клеточный стресс реакции тренировки и активации. общее учение о стадиях адаптации реакции активации и реакция тренировки с длительным сохранением состояния повышенной адаптации. Антиоксиданты АО подавляют АФКпатогенные реакции на мембране клеток. Стадия истощения: снижение холестерина в надпочечниках атрофия надпочечников; снижение гликогена в печени развивается...