19262

Многогрупповое приближение. Технология получения групповых констант. Понятие спектра свертки. Стандартные спектры. Библиотеки групповых констант нейтронов. Комбинированные библиотеки констант

Лекция

Энергетика

Лекция 10. Многогрупповое приближение. Технология получения групповых констант. Понятие спектра свертки. Стандартные спектры. Библиотеки групповых констант нейтронов. Комбинированные библиотеки констант. 10.1. Многогрупповое приближение. Аналитическое решени...

Русский

2013-07-11

139.5 KB

15 чел.

Лекция 10.

«Многогрупповое приближение. Технология получения групповых констант.

Понятие спектра свертки. Стандартные спектры. Библиотеки групповых констант нейтронов. Комбинированные библиотеки констант.»

10.1. Многогрупповое приближение.

Аналитическое решение уравнения переноса нейтронов в общем случае, вообще говоря, невозможно. Это объясняется в частности сложной детальной зависимостью коэффициентов - сечений от энергии. Поэтому во многих численных схемах решения уравнения переноса стремятся снизить размерность задачи по энергии. Пусть в рассматриваемую систему можно разбить на пространственные области {} так, что в пределах каждого энергетического диапазона {Eg} функция плотности потока нейтронов Ф(,,E) обладает свойством подобия, то есть для нее справедливо условное разделение пространственно-угловой и энергетической переменных:

Ф(,,E) = Fg(,) U(E).                                                 (1)

Проинтегрируем уравнение переноса в энергетическом диапазоне Eg. Каждый такой диапазон называется энергетической группой или просто группой, а их совокупность {Eg} - групповым разбиением.

10.2. Технология получения групповых констант.

Рассмотрим второе слагаемое уравнения переноса, в котором требуется проинтегрировать поток с весом зависящего от энергии макроскопического полного сечения взаимодействия. С учетом (1) имеем:

tot(,E) Ф(,,E) = F(,)tot(,E) U(E).

Умножив и разделив на выражение U(E), можем записать:

tot(,E) Ф(,,E) = gtot Fg(,),                                         (2)

где Fg(,) = F(,)U(E) - групповой поток нейтронов,

gx - среднее по группе g сечение процесса типа x (в формуле (2) - полное).

gx =                                                           (3)

10.3. Понятие спектра свертки. Стандартные спектры..

Для того, чтобы (2) выполнялось точно, необходимо получить функции F(,) и U(E) из решения уравнения переноса. Но это означает сохранение размерности и, следовательно, трудоемкости численного решения исходной задачи. Суть группового метода заключается в том, чтобы не решать исходное уравнение относительно U(E) – спектра нейтронов в зоне, а значения (3) получить, используя некоторую известную функцию S(E) – спектра свертки. Тогда величина gx - групповое сечение процесса типа x определяется:   gx =,

где S(E) – спектр свертки (известная функция).

Очевидно, что в группах, в которых практически отсутствует зависимость сечения от энергии, то есть x(E) = const, интегралы спектра в (3) сокращаются. Поэтому групповые сечения вообще не зависят от спектра свертки. В случае, когда сечение имеет зависимость от энергии, в качестве спектра свертки используют либо характерные формы спектра в диапазонах энергии (спектр деления + спектр замедления + спектр Максвелла), либо спектр нейтронов похожей, но уже решенной задачи. Такие известные функции называются стандартными спектрами свертки.

10.4. Библиотеки групповых констант нейтронов.

Стационарное групповое уравнение переноса нейтронов в подкритической системе имеет вид:

+gtot()g = g  (ff)g’() + (,0)+ Qg(,),

где  g(,) и Qg(,) - соответственно поток и источник нейтронов в группе g.

Для решения такого уравнения требуется набор групповых констант (библиотека групповых констант):

gtot() и (ff)g() - полное сечение и сечение генерации в группе g;

g = (E) - спектр нейтронов деления в группе g;

(,0) – дважды дифференциальное сечение рассеяния из группы g в группу g.

10.5. Комбинированные библиотеки констант.

Комбинированные библиотеки используются для совместного решения уравнения переноса нейтронов и гамма-квантов. Например, в программе SCALE используется 27-ми групповая нейтронная + 18-ти групповая для гамма-квантов библиотека констант.

PAGE  2


 

А также другие работы, которые могут Вас заинтересовать

13355. Токарні верстати ,загальний вигляд, основні вузли та блоки 1.03 MB
  1.Токарні верстати загальний вигляд основні вузли та блоки. Верстати токарної групи застосовують для обробки заготовок які обертаються головний рух різання інструментом що здійснює неперервний рух подачі. Тут основним різальним інструментом є різець; використ
13356. Загальний вигляд свердлильних та розточувальних верстатів, основні вузли та блоки 366.5 KB
  1.Загальний вигляд свердлильних та розточувальних верстатів основні вузли та блоки. Свердлильні верстати Свердлильні верстати служать для обробки отворів інструментом який виконує одночасно головний обертальний рух різання і поступальний рух подачі. Розрізн...
13357. Фрезерні верстати 617.5 KB
  Фрезерування високопродуктивний і поширений спосіб обробки поверхонь заготовки за допомогою різального інструмента фрези з багатьма вістрями. Під час обробки фреза обертається виконуючи головний рух різання а заготовка пересувається прямолінійно виконуючи ру
13358. Визначення чисел твердості металів на приладі ТК-2 (типу Роквелла) 2.6 MB
  Лабораторна робота №8 Визначення чисел твердості металів на приладі ТК2 типу Роквелла Мета роботи: Ознайомитися з основними методами вимірювання твердості металів та сплавів ознайомитися з будовою і принципом роботи приладу ТК2 для випробування металів на тве
13359. Виробництво виливків в піщано-глиняних формах 335.95 KB
  Лабораторна робота № 2 Виробництво виливків в піщаноглиняних формах Мета роботи вивчити технологію отримання виливків в піщаноглиняних формах casting mould отримати навички формовки заливки форм вибивки литва аналізу браку сфери застосування литва виготовленого...
13360. Ознайомлення з програмою моделювання електричних та електронних кіл Electronics Workbench 4.0 32 KB
  Лабораторна робота № 5 Тема: Ознайомлення з програмою моделювання електричних та електронних кіл Electronics Workbench 4.0 Мета: Вивчити структуру та основні можливості програми схемотехнічного моделювання Electronics Workbench 4.0. Отримати практичні навички проведення експериме...
13361. Аналіз лінійного кола періодичного несинусоїдального струму 411.5 KB
  Лабораторна робота № 7 Тема: Аналіз лінійного кола періодичного несинусоїдального струму Мета: Вивчити методику комплексного дослідження однофазного електричного кола періодичного негармонічного струму з допомогою програми схемотехнічного моделювання Electroni...
13362. Аналіз перехідних режимів в лінійних електричних колах 571 KB
  Лабораторна робота № 8 Тема: Аналіз перехідних режимів в лінійних електричних колах Мета: Вивчити методику комплексного дослідження перехідних режимів електричних кіл для визначення впливу різних факторів на вигляд та характеристики процесів з допомогою програ...
13363. Дослідження двохкаскадного транзисторного підсилювача 724.5 KB
  ЛАБОРАТОРНОПРАКТИЧНА РОБОТА № 7 Дослідження двохкаскадного транзисторного підсилювача 1. Мета роботи: Ознайомлення з методикою побудови схем і моделювання роботи пристроїв в компютерній лабораторії електротехніки і електроніки. Дослідження ампл...