19264

Метод дискретных ординат, SN-метод. Понятие квадратуры. Квадратуры Гаусса

Лекция

Энергетика

Лекция 12. Метод дискретных ординат SNметод. Понятие квадратуры. Квадратуры Гаусса. 12.1. Особенности методов дискретных ординат. Методы дискретных ординат и связанные с ними методы получения численных решений уравнения переноса широко используются в реакторных р...

Русский

2013-07-11

48.5 KB

40 чел.

Лекция 12.

«Метод дискретных ординат, SN-метод. Понятие квадратуры. Квадратуры Гаусса.»

12.1. Особенности методов дискретных ординат.

Методы дискретных ординат и связанные с ними методы получения численных решений уравнения переноса широко используются в реакторных расчетах и расчетах радиационных защит. В основе этих методов лежит то, что в отличие от разложения по сферическим гармоникам угловое распределение потока нейтронов оценивается в различных дискретных направлениях. Рассматривая достаточное количество направлений, можно, в принципе, получить решение уравнения переноса с любой желаемой степенью точности.

При развитии метода дискретных ординат возникают следующие задачи:

1) выбор конкретных дискретных направлений;

2) аппроксимация интегралов по угловой переменной;

3) аппроксимация производных от потока нейтронов по компонентам угла и, появляющихся в уравнении переноса в криволинейных геометриях.

Можно констатировать, что не существует их единственных решений. В методе дискретных ординат выбор направлений и других параметров, как и выбор энергетических групп и пространственной сетки, неоднозначен и должен основываться на физическом понимании задачи и опыте решения задач такого типа.

12.2. SN-метод. Понятие квадратуры.

Рассмотрим в плоской геометрии групповое уравнение переноса, опустив индекс группы, для набора дискретных направлений {j}. Если интеграл потока в уравнении оценивать численно с помощью квадратурной формулы, то можно получить систему связанных дифференциальных уравнений первого порядка относительно Ф(х, j).

Интеграл потока:    Ф(х, ) =  j Ф(х, j),                                      (1)

где {j}  набор дискретных направлений, {j}  набор соответствующих им квадратурных весов (или весовых множителей),

Уравнение переноса в методе дискретных ординат имеет вид:

+ (х, E) =  ( х, j j) j Ф(х, j) + Q(х, j)

12.3. Граничные условия в SN-методе.

Эту систему связанных дифференциальных уравнений можно решить конечно-разностным методом, после того как определены граничные условия и характер задачи:

условие облучения на границе 0 с заданным источником нейтронов:

Ф(0, j) = Ф0(j);    если j = 1,2,…, J/2

нулевое условие на границе d с вакуумом:

Ф(d, j) = 0;    если j = J/2+1,…, J.

12.4. Вычисление квадратур.

Точность, которая достигается при решении уравнений в методе дискретных ординат для данного J – числа дискретных направлений в большой степени зависит от того, насколько хорошо сделан выбор квадратур. Обычно считается, что квадратуры должны удовлетворять следующим разумным требованиям:  

1) так как интеграл (1) всегда положителен, то требуется, чтобы j > 0 для всех j;

2) формулировка задачи должна быть симметричной относительно зеркального отражения. Т.е. решение не должно зависеть от того, какая сторона плоскости рассматривается как правая, а какая как левая. Поэтому предполагается симметричный выбор направлений и весовых множителей относительно  = 0:

j = J+1-j ,  j = J+1-j   для всех j;

3) если Ф(х, ) представляет собой полином низкого порядка по , то квадратурная формула (1) должна давать точное значение интеграла. Это означает:

j nj = .

Для нечетных n 3) с учетом 1) и 2) выполняется всегда. Записывая 3) для четных n с учетом 1) и 2) получаем значения квадратур.

12.5. Квадратуры Гаусса.

Система гауссовых квадратур широко используются в методах численного интегрирования. Такая система J-ro порядка, т. е. имеющая J значений {j} и J значений {j}, является единственной системой, обладающей тем свойством, что формула (1) точна при интегрировании полинома порядка 2 J –1.

Константы для формулы гауссовых квадратур:

J = 2

1 = 2 = 1,000

1 = – 2 = 0,57735

J = 4

1 = 4 = 0,65215

2 = 3 = 0,34785

1 = – 4 = 0,33998

2 = – 3 = 0,86114

J = 6

1 = 6 = 0,46791

2 = 5 = 0,36076

3 = 4 = 0,17132

1 = – 6 = 0,23862

2 = – 5 = 0,66121

3 = – 4 = 0,93247

PAGE  2


 

А также другие работы, которые могут Вас заинтересовать

66271. УКРАЇНА У НАС ОДНА 40 KB
  Знаю, що на урочистих лінійках з нагоди свята Першого дзвоника інколи потрібні невеличкі сценки, щоб зацікавити дітей та їхніх батьків, щоб прикрасити й урізноманітнити свято. Так, як цей рік ювілейний для нашої держави, пропоную сценку...
66272. «І МЕНЕ В СІМ’Ї ВЕЛИКІЙ, В СІМ’Ї ВОЛЬНІЙ НОВІЙ, НЕ ЗАБУДЬТЕ ПОМ’ЯНУТИ НЕЗЛИМ ТИХИМ СЛОВОМ…» 29 KB
  Хлопчик: Матусю а правда що небо на залізних стовпах тримається Мати: Таксиночку правда. Хлопчик: А чому так багато зірок на небі Мати: Цеколи людина на світ приходитьБог свічку запалює і горить та свічкапоки людина не помре.
66276. Хімічний та елементний склад живих організмів. Вода і мінеральні солі 63.5 KB
  Мета: ознайомити студентів з хімічним складом живих організмів, з біологічними елементами; розглянути їх біологічну роль в організмі. Розширити знання про біологічне значення в організмі неорганічних сполук води і мінеральних солей.
66277. Сигналы регулировщика 80 KB
  Цель: дать детям представление о работе регулировщика. Выучить сигналы регулировщика. Развивать внимание, мышление, память. Учить анализировать, обобщать, делать выводы. Обогащать активный словарный запас учащихся.
66278. Учись бути здоровим 457.5 KB
  Харчування дітей має бути різноманітним з достатньою кількістю вітамінів. Вітаміни корисні для людини. Слово вітаміни походить від латинського слова віта життя. Якщо вітамінів не вистачає людина важко хворіє.
66279. Англійська народна казка «Сорочаче гніздо» 46 KB
  Наша держава має добрих сусідів: росіян, білорусів, поляків, руминів. У новому розділі «Казки народів Європи» ми познайомимося з казками, які читають діти інших народів. Казки – це вигадані оповідання, котрі передаються протягом століть із роду в рід...