19264

Метод дискретных ординат, SN-метод. Понятие квадратуры. Квадратуры Гаусса

Лекция

Энергетика

Лекция 12. Метод дискретных ординат SNметод. Понятие квадратуры. Квадратуры Гаусса. 12.1. Особенности методов дискретных ординат. Методы дискретных ординат и связанные с ними методы получения численных решений уравнения переноса широко используются в реакторных р...

Русский

2013-07-11

48.5 KB

45 чел.

Лекция 12.

«Метод дискретных ординат, SN-метод. Понятие квадратуры. Квадратуры Гаусса.»

12.1. Особенности методов дискретных ординат.

Методы дискретных ординат и связанные с ними методы получения численных решений уравнения переноса широко используются в реакторных расчетах и расчетах радиационных защит. В основе этих методов лежит то, что в отличие от разложения по сферическим гармоникам угловое распределение потока нейтронов оценивается в различных дискретных направлениях. Рассматривая достаточное количество направлений, можно, в принципе, получить решение уравнения переноса с любой желаемой степенью точности.

При развитии метода дискретных ординат возникают следующие задачи:

1) выбор конкретных дискретных направлений;

2) аппроксимация интегралов по угловой переменной;

3) аппроксимация производных от потока нейтронов по компонентам угла и, появляющихся в уравнении переноса в криволинейных геометриях.

Можно констатировать, что не существует их единственных решений. В методе дискретных ординат выбор направлений и других параметров, как и выбор энергетических групп и пространственной сетки, неоднозначен и должен основываться на физическом понимании задачи и опыте решения задач такого типа.

12.2. SN-метод. Понятие квадратуры.

Рассмотрим в плоской геометрии групповое уравнение переноса, опустив индекс группы, для набора дискретных направлений {j}. Если интеграл потока в уравнении оценивать численно с помощью квадратурной формулы, то можно получить систему связанных дифференциальных уравнений первого порядка относительно Ф(х, j).

Интеграл потока:    Ф(х, ) =  j Ф(х, j),                                      (1)

где {j}  набор дискретных направлений, {j}  набор соответствующих им квадратурных весов (или весовых множителей),

Уравнение переноса в методе дискретных ординат имеет вид:

+ (х, E) =  ( х, j j) j Ф(х, j) + Q(х, j)

12.3. Граничные условия в SN-методе.

Эту систему связанных дифференциальных уравнений можно решить конечно-разностным методом, после того как определены граничные условия и характер задачи:

условие облучения на границе 0 с заданным источником нейтронов:

Ф(0, j) = Ф0(j);    если j = 1,2,…, J/2

нулевое условие на границе d с вакуумом:

Ф(d, j) = 0;    если j = J/2+1,…, J.

12.4. Вычисление квадратур.

Точность, которая достигается при решении уравнений в методе дискретных ординат для данного J – числа дискретных направлений в большой степени зависит от того, насколько хорошо сделан выбор квадратур. Обычно считается, что квадратуры должны удовлетворять следующим разумным требованиям:  

1) так как интеграл (1) всегда положителен, то требуется, чтобы j > 0 для всех j;

2) формулировка задачи должна быть симметричной относительно зеркального отражения. Т.е. решение не должно зависеть от того, какая сторона плоскости рассматривается как правая, а какая как левая. Поэтому предполагается симметричный выбор направлений и весовых множителей относительно  = 0:

j = J+1-j ,  j = J+1-j   для всех j;

3) если Ф(х, ) представляет собой полином низкого порядка по , то квадратурная формула (1) должна давать точное значение интеграла. Это означает:

j nj = .

Для нечетных n 3) с учетом 1) и 2) выполняется всегда. Записывая 3) для четных n с учетом 1) и 2) получаем значения квадратур.

12.5. Квадратуры Гаусса.

Система гауссовых квадратур широко используются в методах численного интегрирования. Такая система J-ro порядка, т. е. имеющая J значений {j} и J значений {j}, является единственной системой, обладающей тем свойством, что формула (1) точна при интегрировании полинома порядка 2 J –1.

Константы для формулы гауссовых квадратур:

J = 2

1 = 2 = 1,000

1 = – 2 = 0,57735

J = 4

1 = 4 = 0,65215

2 = 3 = 0,34785

1 = – 4 = 0,33998

2 = – 3 = 0,86114

J = 6

1 = 6 = 0,46791

2 = 5 = 0,36076

3 = 4 = 0,17132

1 = – 6 = 0,23862

2 = – 5 = 0,66121

3 = – 4 = 0,93247

PAGE  2


 

А также другие работы, которые могут Вас заинтересовать

54172. Применение свойств действий при вычислениях и решении уравнений в 5-м и 6-м классах 151.5 KB
  На усвоение этих свойств достаточно на такой ранней стадии устные упражнения с дальнейшим переходом к письменным упражнениям, развивая у учеников умение и навыки работы с числовыми выражениями, решении уравнений без использования правил нахождения неизвестного компонента действия: развивая у учеников творческий подход к решению математических задач.
54173. Система практичних завдань при вивченні математики у 5-6 класах 199.5 KB
  Звичайно в шкільних підручниках є задачі-розрахунки, в основу яких покладено залежності між величинами, які часто зустрічаються в житті, між компонентами руху; між ціною, кількістю і вартістю; між продуктивністю праці, часом роботи і одержаною продукцією; розрахунки часу; знаходження периметрів, площ; обчислення витрат різних матеріалів тощо.
54174. Система дидактичних умов пізнавальної діяльності учнів на уроках математики 119.5 KB
  Система дидактичних розумів розвитку пізнавальної діяльності учнів на уроках математики. Розвиток пізнавального інтересу учнів. Прийоми активізації пізнавальної діяльності учнів на уроках математики. Інтерактивні технології навчання спосіб створення умов залучення учнів до пізнавальної діяльності.
54175. Первісна. Інтеграл. Застосування інтегралу при розвязуванні задач економічного змісту 690.5 KB
  Група студентів ділиться на чотири команди. На першому етапі заняття проводиться узагальнення та систематизація знань учнів з теми, розглядаються учнівські презентації про виникнення інтегралу та його використання. На другому етапі – пояснення нового матеріалу, потім його закріплення в вигляді створення проектів кожною підгрупою.
54176. Развитие культуры в условиях нижнего и среднего палеолита 33 KB
  Одним из важнейших способов выживания человека в первобытную эпоху стал беспрерывный процесс познания окружающего мира. На раннем этапе жизни человека предметом познания и осмысления является природа, от которой напрямую зависит жизнь человеческого общества.
54177. Новые информационные технологии в профильном обучении математики на примере темы „Многогранники” в 11 классе 827.5 KB
  Рассмотрение различных случаев взаимного расположения диагоналей ребер и граней многогранника использование для этого моделей и готовых чертежей способствует развитию пространственных представлений учащихся их интуиции Рис. Особо подчеркиваются характеристические свойства призмы.
54178. Видатні вчені на уроках математики 165 KB
  Задача 2 Вирішивши поділити всі свої заощадження між усіма синами хтось склав такий заповіт: Старший з моїх синів повинен отримати 1000 франків і 1 8 частину остачі; наступний 2000 франків і 1 8 нової остачі; третій син 3000 франків і 1 8 частини третьої остачі і т. Так як усі сини отримали порівну то 1 8 частина кожної нової остачі була на 1000 франків менше 1 8 частини попередньої остачі тобто уся нова остача була на 8000 франків менше попередньої. Так як за умовою усі гроші були розділені повністю то коли молодший син отримав по...
54179. Видатні вчені на уроках математики: Евклід, Б.В.Гнеденко, Карл Фрідріх Гаусс 110 KB
  Евклід (бл.365 – бл.300 до н. е.) – старогрецький математик визнаний основоположник математики. Родом з Афін, учень Платона. Автор найдавніших трактатів з математики. Основна праця «Начала» (латинізована назва «Елементи») включає в себе 15 книжок, у яких міститься систематизований вклад геометрії, а також деяких питань теорії чисел.
54180. Метод розмірностей 342 KB
  Однак виявляється що метод розмірностей може бути використаний не тільки і не скільки для перевірки правильності розвязку поставленої задачі але й для виведення з точністю до константи невідомих співвідношень між фізичними величинами. 1 Основним фундаментальним підходом методу розмірностей є те що будьяку таку функцію ми можемо представити у вигляді наступного виразу y = C x1α x2β x3γ xnω 2 де C безрозмірна константа;...