19267

Физическая постановка задачи, алгоритм метода Монте-Карло в задачах переноса излучений. Генератор случайных чисел. Получение локальных и интегральных характеристик поля нейтронов и гамма-квантов

Лекция

Энергетика

Лекция 15. Физическая постановка задачи алгоритм метода МонтеКарло в задачах переноса излучений. Генератор случайных чисел. Получение локальных и интегральных характеристик поля нейтронов и гаммаквантов. 15.1. Особенности метода МонтеКарло. Метод МонтеКарло п

Русский

2013-07-11

38.5 KB

8 чел.

Лекция 15.

«Физическая постановка задачи, алгоритм метода Монте-Карло в задачах переноса излучений. Генератор случайных чисел. Получение локальных и интегральных характеристик поля нейтронов и гамма-квантов.»

15.1. Особенности метода Монте-Карло.

Метод Монте-Карло представляет собой численную процедуру, основывающуюся на статистическом подходе. Вообще говоря, этот метод не является методом решения уравнения переноса излучений. Метод Монте- Карло особенно полезен в особых случаях, например, при сложной геометрии, когда использование других методов затруднено. Кроме того, когда сечение сложным образом зависит от энергии, метод Монте-Карло устраняет необходимость проводить вспомогательные расчеты, например распределения потоков в резонансной области энергий. Метод может быть полезен также для определения групповых констант, требующихся в многогрупповых приближениях.

15.2. Физическая постановка задачи.

Применимость метода Монте- Карло при расчете переноса нейтронов основывается на том, что макроскопическое сечение может быть интерпретировано как вероятность взаимодействия на единичном пути пробега нейтрона (гамма-кванта). В методе Монте-Карло генерируется ряд историй нейтронов, причем рассматривается их судьба в ходе последовательных столкновений. Место столкновений и их результат, т. е. направление и энергия появляющегося нейтрона (или нейтронов), определяются с учетом вероятностей с помощью случайных чисел.

15.3. Генератор случайных чисел.

Случайные числа, необходимые для расчетов методом Монте-Карло, обычно генерируются вычислительной машиной, с помощью генератора случайных чисел. Генератор случайных чисел выбирает числа ξ1, ξ2, ξ3 … случайным образом из интервала 0  ξi  1. Это означает, что вероятность р(ξi) dξi для ξi оказаться между ξi и ξi + dξi есть dξi, если 0  ξi  1. Т.е. р i) = 1.  

15.4. Алгоритм метода Монте-Карло в задачах переноса излучений.

Рассмотрим пример использования случайных чисел при построении историй нейтронов, которые испускаются моноэнергетическим изотропным точечным источником.

Первый шаг выбор направления движения нейтрона. Для этого используются два первых случайных числа ξ1 и ξ2. Азимутальный угол можно выбрать равным φ = 2 ξ1, а косинус полярного угла µ = 2 ξ2  1. Такой выбор обусловлен изотропностью источника, и все начальные значения угловых переменных φ и µ, описывающих направление полета нейтрона, равновероятны в интервалах 0  φ  2 и 1  µ  1.

Следующий шаг нахождение места первого столкновения. Пусть сечение в выбранном направлении на расстоянии s от источника обозначено σ(s). Тогда вероятность того, что нейтрон испытает столкновение между s и s + ds, равна:

P(s) ds = σ(s) exp [σ(s’)] ds.

Для нахождения s места первого столкновения используется третье случайное число ξ3:

ln ξ3 =  σ(s).

Последующие случайные числа должны быть использованы для определения результата первого столкновения, места второго столкновения и т. д. При определении результата первого столкновения захват, рассеяние, и т.д. учитывается, что сумма парциальных макроскопических сечений равна полному макроскопическому сечению. Эта процедура продолжается до тех пор, пока история нейтрона не заканчивается, например, утечкой из системы или поглощением.

15.5. Получение локальных и интегральных характеристик поля нейтронов и гамма-квантов.

При решении уравнения переноса методом Монте-Карло возникающие неточности связаны не с погрешностями метода, как это имеет место в многогрупповых приближениях, а с ограниченным числом рассматриваемых историй нейтронов. Разработаны методы, позволяющие свести к минимуму эти ошибки при данном объеме вычислительных работ.

Случайно может оказаться при рассмотрении истории замедляющегося нейтрона, что он поглощается уже в первом столкновении. Вместо того, чтобы прекратить рассмотрение, обычно имеет смысл продолжить его, но приписать этому нейтрону меньший вес, пропорциональный вероятности рассеяния при этом столкновении. В результате история нейтрона может быть прослежена до тех пор, пока приписанный ему таким образом вес не станет слишком малым или пока нейтрон не покинет систему.

Более сложный подход может быть использован для определения вклада нейтронов источника в показания детектора. Очевидно, что некоторые из этих нейтронов, в частности те из них, которые вылетают в направлении детектора и/или обладают высокой энергией, с большей вероятностью достигнут детектора. В такой ситуации представляется разумным концентрироваться на расчете именно таких нейтронов.

PAGE  2


 

А также другие работы, которые могут Вас заинтересовать

28549. Режим CBC 39 KB
  Дешифрование в режиме СВС Для получения первого блока зашифрованного сообщения используется инициализационный вектор IV для которого выполняется операция XOR с первым блоком незашифрованного сообщения. В режиме CBC при зашифровании каждая итерация алгоритма зависит от результата предыдущей итерации поэтому зашифрование сообщения не поддаётся расспараллеливанию. Однако расшифрование когда весь шифротекст уже получен можно выполнять параллельно и независимо для всех блоков сообщения см. Это дает значительный выигрыш во времени при...
28550. Режим CFB 66.5 KB
  Как и в режиме CBC здесь используется операция XOR для предыдущего блока зашифрованного текста и следующего блока незашифрованного текста. Таким образом любой блок зашифрованного текста является функцией от всего предыдущего незашифрованного текста. Для левых J битов выхода алгоритма выполняется операция XOR с первыми J битами незашифрованного текста Р1 для получения первого блока зашифрованного текста С1. При дешифровании используется аналогичная схема за исключением того что для блока получаемого зашифрованного текста выполняется...
28551. Режим шифрования с обратной связью по выходу (OFB) 52.55 KB
  Разница заключается в том что выход алгоритма в режиме OFB подается обратно в регистр тогда как в режиме CFB в регистр подается результат применения операции XOR к незашифрованному блоку и результату алгоритма см. Шифрование в режиме OFB Основное преимущество режима OFB состоит в том что если при передаче произошла ошибка то она не распространяется на следующие зашифрованные блоки и тем самым сохраняется возможность дешифрования последующих блоков. Дешифрование в режиме OFB Недостаток режима OFB заключается в том что он более уязвим к...
28552. Симметричные методы шифрования DES 63.46 KB
  Функция перестановки одна и та же для каждого раунда но подключи Ki для каждого раунда получаются разные вследствие повторяющегося сдвига битов ключа. Последовательность преобразований отдельного раунда Теперь рассмотрим последовательность преобразований используемую на каждом раунде. Создание подключей Ключ для отдельного раунда Ki состоит из 48 битов. На каждом раунде Ci и Di независимо циклически сдвигаются влево на 1 или 2 бита в зависимости от номера раунда.
28553. Примеры современных шифров проблема последнего блока DES 26.44 KB
  Альтернативой DES можно считать тройной DES IDEA а также алгоритм Rijndael принятый в качестве нового стандарта на алгоритмы симметричного шифрования. Также без ответа пока остается вопрос возможен ли криптоанализ с использованием существующих характеристик алгоритма DES. Алгоритм тройной DES В настоящее время основным недостатком DES считается маленькая длина ключа поэтому уже давно начали разрабатываться различные альтернативы этому алгоритму шифрования.
28554. Распределение ключей. Использование базовых ключей 13.15 KB
  Он заключается в доставке абоненту сети связи не полного комплекта ключей для связи со всеми другими абонентами а некоторой универсальной заготовки уникальной для каждого абонента по которой он может вычислить необходимый ему ключ. Пусть в сети связи действуют N абонентов занумеруем их от 0 до N1 и поставим каждому абоненту уникальный открытый идентификатор Yi из некоторого множества Y открытый в смысле общеизвестный. Генерация ключей для абонентов сети связи заключается в выработке N секретных ключей Xi из некоторого множества X....
28555. Использование маркантов или производных ключей 15.1 KB
  Заключается в использовании для шифрования не непосредственно ключей хранимых у абонентов а некоторых производных ключей из них получаемых. Заключается в использовании вместо ключа K двоичного вектора S полученного побитным суммированием K и случайного двоичного вектора M называемого маркантом при этом маркант передается в открытом виде отправителем получателю. Действительно использование одного и того же ключа но разных маркантов не снижает стойкости шифра. Однако этот метод обладает одним недостатком восстановление одного...
28557. Несимметричные системы шифрования и их построение 23.7 KB
  Эти системы характеризуются тем что для шифрования и для расшифрования используются разные ключи связанные между собой некоторой зависимостью. Один из ключей например ключ шифрования может быть сделан общедоступным и в этом случае проблема получения общего секретного ключа для связи отпадает. Поскольку в большинстве случаев один ключ из пары делается общедоступным такие системы получили также название криптосистем с открытым ключом. Первый ключ не является секретным и может быть опубликован для использования всеми пользователями...