19267

Физическая постановка задачи, алгоритм метода Монте-Карло в задачах переноса излучений. Генератор случайных чисел. Получение локальных и интегральных характеристик поля нейтронов и гамма-квантов

Лекция

Энергетика

Лекция 15. Физическая постановка задачи алгоритм метода МонтеКарло в задачах переноса излучений. Генератор случайных чисел. Получение локальных и интегральных характеристик поля нейтронов и гаммаквантов. 15.1. Особенности метода МонтеКарло. Метод МонтеКарло п

Русский

2013-07-11

38.5 KB

8 чел.

Лекция 15.

«Физическая постановка задачи, алгоритм метода Монте-Карло в задачах переноса излучений. Генератор случайных чисел. Получение локальных и интегральных характеристик поля нейтронов и гамма-квантов.»

15.1. Особенности метода Монте-Карло.

Метод Монте-Карло представляет собой численную процедуру, основывающуюся на статистическом подходе. Вообще говоря, этот метод не является методом решения уравнения переноса излучений. Метод Монте- Карло особенно полезен в особых случаях, например, при сложной геометрии, когда использование других методов затруднено. Кроме того, когда сечение сложным образом зависит от энергии, метод Монте-Карло устраняет необходимость проводить вспомогательные расчеты, например распределения потоков в резонансной области энергий. Метод может быть полезен также для определения групповых констант, требующихся в многогрупповых приближениях.

15.2. Физическая постановка задачи.

Применимость метода Монте- Карло при расчете переноса нейтронов основывается на том, что макроскопическое сечение может быть интерпретировано как вероятность взаимодействия на единичном пути пробега нейтрона (гамма-кванта). В методе Монте-Карло генерируется ряд историй нейтронов, причем рассматривается их судьба в ходе последовательных столкновений. Место столкновений и их результат, т. е. направление и энергия появляющегося нейтрона (или нейтронов), определяются с учетом вероятностей с помощью случайных чисел.

15.3. Генератор случайных чисел.

Случайные числа, необходимые для расчетов методом Монте-Карло, обычно генерируются вычислительной машиной, с помощью генератора случайных чисел. Генератор случайных чисел выбирает числа ξ1, ξ2, ξ3 … случайным образом из интервала 0  ξi  1. Это означает, что вероятность р(ξi) dξi для ξi оказаться между ξi и ξi + dξi есть dξi, если 0  ξi  1. Т.е. р i) = 1.  

15.4. Алгоритм метода Монте-Карло в задачах переноса излучений.

Рассмотрим пример использования случайных чисел при построении историй нейтронов, которые испускаются моноэнергетическим изотропным точечным источником.

Первый шаг выбор направления движения нейтрона. Для этого используются два первых случайных числа ξ1 и ξ2. Азимутальный угол можно выбрать равным φ = 2 ξ1, а косинус полярного угла µ = 2 ξ2  1. Такой выбор обусловлен изотропностью источника, и все начальные значения угловых переменных φ и µ, описывающих направление полета нейтрона, равновероятны в интервалах 0  φ  2 и 1  µ  1.

Следующий шаг нахождение места первого столкновения. Пусть сечение в выбранном направлении на расстоянии s от источника обозначено σ(s). Тогда вероятность того, что нейтрон испытает столкновение между s и s + ds, равна:

P(s) ds = σ(s) exp [σ(s’)] ds.

Для нахождения s места первого столкновения используется третье случайное число ξ3:

ln ξ3 =  σ(s).

Последующие случайные числа должны быть использованы для определения результата первого столкновения, места второго столкновения и т. д. При определении результата первого столкновения захват, рассеяние, и т.д. учитывается, что сумма парциальных макроскопических сечений равна полному макроскопическому сечению. Эта процедура продолжается до тех пор, пока история нейтрона не заканчивается, например, утечкой из системы или поглощением.

15.5. Получение локальных и интегральных характеристик поля нейтронов и гамма-квантов.

При решении уравнения переноса методом Монте-Карло возникающие неточности связаны не с погрешностями метода, как это имеет место в многогрупповых приближениях, а с ограниченным числом рассматриваемых историй нейтронов. Разработаны методы, позволяющие свести к минимуму эти ошибки при данном объеме вычислительных работ.

Случайно может оказаться при рассмотрении истории замедляющегося нейтрона, что он поглощается уже в первом столкновении. Вместо того, чтобы прекратить рассмотрение, обычно имеет смысл продолжить его, но приписать этому нейтрону меньший вес, пропорциональный вероятности рассеяния при этом столкновении. В результате история нейтрона может быть прослежена до тех пор, пока приписанный ему таким образом вес не станет слишком малым или пока нейтрон не покинет систему.

Более сложный подход может быть использован для определения вклада нейтронов источника в показания детектора. Очевидно, что некоторые из этих нейтронов, в частности те из них, которые вылетают в направлении детектора и/или обладают высокой энергией, с большей вероятностью достигнут детектора. В такой ситуации представляется разумным концентрироваться на расчете именно таких нейтронов.

PAGE  2


 

А также другие работы, которые могут Вас заинтересовать

73114. Классификация помещений по электробезопасности в зависимости от условий окружающей среды 29 KB
  В зависимости от наличия перечисленных условий, повышающих опасность воздействия тока на человека, «Правила устройства электроустановок» делят все помещения по опасности поражения людей электрическим током на следующие классы: без повышенной опасности, с повышенной опасностью...
73116. Принцип действия и устройство защитных заземления и зануления 29 KB
  Защитное заземление выполняют путем преднамеренного соединения корпусов оборудования с землей. Защитное заземление оборудования в сети с глухозаземленной нейтралью безопасность не обеспечивает.
73117. Основные, дополнительные и вспомогательные защитные средства, их характеристика 29 KB
  Электрозащитные средства представляют собой переносимые и перевозимые изделия служащие для защиты людей работающих с электроустановками от поражения электрическим током от воздействия электрической дуги и электромагнитного поля.
73118. Оказание первой доврачебной помощи при поражении электрическим током 29 KB
  Необходимо как можно быстрее освободить пострадавшего от действия тока так как от продолжительности этого действия зависит тяжесть электротравмы. Если отключить установку достаточно быстро нельзя необходимо отделить пострадавшего от токоведущих частей или провода с помощью каната...
73119. Возникновение зарядов статического электричества на производстве и меры защиты 29.5 KB
  Это совокупность явлений связанных с возникновением сохранением релаксацией свободного электрического заряда на поверхности и в объеме диэлектрических и полупроводниковых материалов или на изолированных проводниках.
73120. Устройство и требования безопасности при эксплуатации сосудов и аппаратов, работающих под избыточным давлением 29 KB
  Правила устанавливают специальные требования безопасности к конструкции и материалам сосудов; изготовлению реконструкции монтажу наладке и ремонту; арматуре КИП предохранительным устройствам; установке регистрации техническому освидетельствованию...
73121. Безопасность стационарных сосудов под давлением 29.5 KB
  Не разрешается установка регистрируемых в органе технадзора сосудов в жилых общественных бытовых зданиях в примыкающих к ним помещениях. При любой установке сосудов должна обеспечиваться возможность осмотра ремонта и очистки их с внутренней и наружной сторон.
73122. Безопасность нестационарных сосудов под давлением 30 KB
  Безопасность эксплуатации передвижных сосудов обеспечивается: Необходимой механической прочностью и надлежащим контролем за их состоянием Исключением возможности наполнения горючими газами сосудов предназначенных для негорючих газов и наполнение кислородом...