19267

Физическая постановка задачи, алгоритм метода Монте-Карло в задачах переноса излучений. Генератор случайных чисел. Получение локальных и интегральных характеристик поля нейтронов и гамма-квантов

Лекция

Энергетика

Лекция 15. Физическая постановка задачи алгоритм метода МонтеКарло в задачах переноса излучений. Генератор случайных чисел. Получение локальных и интегральных характеристик поля нейтронов и гаммаквантов. 15.1. Особенности метода МонтеКарло. Метод МонтеКарло п

Русский

2013-07-11

38.5 KB

8 чел.

Лекция 15.

«Физическая постановка задачи, алгоритм метода Монте-Карло в задачах переноса излучений. Генератор случайных чисел. Получение локальных и интегральных характеристик поля нейтронов и гамма-квантов.»

15.1. Особенности метода Монте-Карло.

Метод Монте-Карло представляет собой численную процедуру, основывающуюся на статистическом подходе. Вообще говоря, этот метод не является методом решения уравнения переноса излучений. Метод Монте- Карло особенно полезен в особых случаях, например, при сложной геометрии, когда использование других методов затруднено. Кроме того, когда сечение сложным образом зависит от энергии, метод Монте-Карло устраняет необходимость проводить вспомогательные расчеты, например распределения потоков в резонансной области энергий. Метод может быть полезен также для определения групповых констант, требующихся в многогрупповых приближениях.

15.2. Физическая постановка задачи.

Применимость метода Монте- Карло при расчете переноса нейтронов основывается на том, что макроскопическое сечение может быть интерпретировано как вероятность взаимодействия на единичном пути пробега нейтрона (гамма-кванта). В методе Монте-Карло генерируется ряд историй нейтронов, причем рассматривается их судьба в ходе последовательных столкновений. Место столкновений и их результат, т. е. направление и энергия появляющегося нейтрона (или нейтронов), определяются с учетом вероятностей с помощью случайных чисел.

15.3. Генератор случайных чисел.

Случайные числа, необходимые для расчетов методом Монте-Карло, обычно генерируются вычислительной машиной, с помощью генератора случайных чисел. Генератор случайных чисел выбирает числа ξ1, ξ2, ξ3 … случайным образом из интервала 0  ξi  1. Это означает, что вероятность р(ξi) dξi для ξi оказаться между ξi и ξi + dξi есть dξi, если 0  ξi  1. Т.е. р i) = 1.  

15.4. Алгоритм метода Монте-Карло в задачах переноса излучений.

Рассмотрим пример использования случайных чисел при построении историй нейтронов, которые испускаются моноэнергетическим изотропным точечным источником.

Первый шаг выбор направления движения нейтрона. Для этого используются два первых случайных числа ξ1 и ξ2. Азимутальный угол можно выбрать равным φ = 2 ξ1, а косинус полярного угла µ = 2 ξ2  1. Такой выбор обусловлен изотропностью источника, и все начальные значения угловых переменных φ и µ, описывающих направление полета нейтрона, равновероятны в интервалах 0  φ  2 и 1  µ  1.

Следующий шаг нахождение места первого столкновения. Пусть сечение в выбранном направлении на расстоянии s от источника обозначено σ(s). Тогда вероятность того, что нейтрон испытает столкновение между s и s + ds, равна:

P(s) ds = σ(s) exp [σ(s’)] ds.

Для нахождения s места первого столкновения используется третье случайное число ξ3:

ln ξ3 =  σ(s).

Последующие случайные числа должны быть использованы для определения результата первого столкновения, места второго столкновения и т. д. При определении результата первого столкновения захват, рассеяние, и т.д. учитывается, что сумма парциальных макроскопических сечений равна полному макроскопическому сечению. Эта процедура продолжается до тех пор, пока история нейтрона не заканчивается, например, утечкой из системы или поглощением.

15.5. Получение локальных и интегральных характеристик поля нейтронов и гамма-квантов.

При решении уравнения переноса методом Монте-Карло возникающие неточности связаны не с погрешностями метода, как это имеет место в многогрупповых приближениях, а с ограниченным числом рассматриваемых историй нейтронов. Разработаны методы, позволяющие свести к минимуму эти ошибки при данном объеме вычислительных работ.

Случайно может оказаться при рассмотрении истории замедляющегося нейтрона, что он поглощается уже в первом столкновении. Вместо того, чтобы прекратить рассмотрение, обычно имеет смысл продолжить его, но приписать этому нейтрону меньший вес, пропорциональный вероятности рассеяния при этом столкновении. В результате история нейтрона может быть прослежена до тех пор, пока приписанный ему таким образом вес не станет слишком малым или пока нейтрон не покинет систему.

Более сложный подход может быть использован для определения вклада нейтронов источника в показания детектора. Очевидно, что некоторые из этих нейтронов, в частности те из них, которые вылетают в направлении детектора и/или обладают высокой энергией, с большей вероятностью достигнут детектора. В такой ситуации представляется разумным концентрироваться на расчете именно таких нейтронов.

PAGE  2


 

А также другие работы, которые могут Вас заинтересовать

72709. РЕЗЬБОВОЙ МИКРОМЕТР СО ВСТАВКАМИ 1.49 MB
  Комплексный метод служит для оценки годности резьбы. При этом учитываются погрешности всех параметров резьбы. Контроль резьбы калибрами прост и удобен.
72711. Микрометрический нутромер 198.5 KB
  Устройство и принцип действия прибора Микрометрический нутромер по устройству напоминает микрометр. Цена деления прибора -– 001 мм. Настройка прибора на конкретное измерение выполняется путём подбора подходящих удлинителей отсчёт производится п шкалам барабана и стебля.
72713. Индикаторный нутромер 100 KB
  Нутромеры индикаторного вида выпускают со стандартизованными пределами измерений 610 мм 1018 мм и др. К прибору прилагаются сменные стержни и шайбы устанавливающиеся в отверстие тройника головки нутромера. Устройство и принцип действия прибора.
72714. Оптимизация каналов реализации продукции 37.5 KB
  Постановка задачи Определить оптимальную структуру каналов реализации получения максимальной выручки от реализации продукции. Известна цена реализации продукции по каждому каналу реализации табл. цена реализации продукции тыс.
72715. Знакомство со средой программирования C++ Builder 6 394 KB
  Цель работы: Знакомство с оболочкой среды визуального программирования C++Builder. Получение навыков создания простейших приложений. Методические указания. В ходе выполнения лабораторной работы необходимо, используя предложенную последовательность действий, ознакомиться с интерфейсом...
72716. Изучение основных компонентов среды С++ Builder 6: Button, Edit, Label. Решение алгебраических задач 443.5 KB
  Из главной формы необходимо вызвать вторую форму нажатием кнопки мыши на поле главной формы. На поле второй формы должны быть расположены поле для ввода числа поле результата суммирования вводимых чисел поля ввода и вывода чисел должны иметь поясняющий текст.