19355

Ферриты и их применение в технике сверхвысоких частот

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Лекция №7 Ферриты и их применение в технике сверхвысоких частот. Ферриты от лат. ferrum железо в прямом смысле химические соединения окиси железа Fe2O3 с окислами других металлов; в более широком понимании сложные окислы содержащие железо и другие элементы. Большин...

Русский

2013-07-12

102.5 KB

43 чел.

Лекция №7

Ферриты и их применение в технике сверхвысоких частот.

Ферриты (от лат. ferrum — железо), в прямом смысле — химические соединения окиси железа Fe2O3 с окислами других металлов; в более широком понимании — сложные окислы, содержащие железо и другие элементы. Большинство ферритов являются ферримагнетиками и сочетают ферромагнитные и полупроводниковые или диэлектрическими свойства, благодаря чему они получили широкое применение как магнитные материалы в радиотехнике, радиоэлектронике, вычислительной технике.

Рис. 1. Крист. структура ферритов-шпинелей: а — схематическое изображение элементарной ячейки шпинельной структуры (её удобно делить на 8 равных частей — октантов); б — расположение ионов в смежных октантах ячейки: белые кружки — ионы О2- образующие остов, чёрные — ионы металла в октаэдрич. и тетраэдрич. промежутках; в — ион металла в тетраэдрич. промежутке; г — ион металла в октаэдрич. промежутке.

В состав феррита входят анионы кислорода О2-, образующие остов их кристаллич. решётки; в промежутках между ионами кислорода располагаются катионы Fe3+ , имеющие меньший радиус, чем анионы O2-, и катионы Меk+ металлов, которые могут иметь разл. ионные радиусы и разные валентности k. В результате косвенного обменного взаимодействия катионов Fe3+ и Меk+ в феррит возникает ферримагнитное упорядочение с высокими значениями намагниченности и точек Кюри. Различают феррит-шпинели, феррит-гранаты, ортоферриты и гексаферриты. Ферриты-шпинели имеют структуру минерала шпинели с общей формулой MeOFe2O3, где Me— Ni2+ , Co2+ ,Fe2+ , Mn2+, Mg2+ , Li1+, Cu2+ . Элементарная ячейка феррит-шпинели представляет собой куб, образуемый 8 молекулами MeOFe2O3 и состоящий из 32 анионов O2-, между которыми имеются 64 тетраэдрич. (А) и 32 октаэдрич. (В) позиции, частично заселённые катионами Fe3+ и Ме2+ (рис. 1). В зависимости от того, какие ионы и в каком порядке занимают позиции А и В, различают нормальные шпинели и обращённые шпинели. В обращённых шпинелях половина ионов Fe3+ находится в тетраэдрич. позициях, а в октаэдрич. позициях — 2-я половина ионов Fe3+ и ионы Ме2+ . При этом намагниченность (магн. момент) MA октаэдрич. подрешётки больше тетраэдрической МB, что приводит к возникновению ферримагнетизма.

Ферриты-гранаты элементов R3+ (Sm3+, Eu3+ , Gd3+ , Tb3+ Dy3+, Ho3+ , Er3+ , Tm3+, Yb3+, Lu3+ и Y3+ ) имеют кубич. структуру граната с общей ф-лой R3Fe5Ol2. Элементарная ячейка феррит-гранатов содержит 8 молекул R3Fe5Ol2; в неё входят 96 ионов О2-, 24 иона R3+ и 40 ионов Fe3+ . В феррит-гранатах имеется три типа позиций, в которых размещаются катионы: большая часть ионов Fe3+ занимает тетраэдрические (d), меньшая часть ионов Fe3+ — октаэдрические (а) и ионы R3+ — додекаэдрич. позиции (с). Соотношение величин и направлений намагниченностей катионов, занимающих позиции d, а, с, показано на рис. 2 .

Рис. 2. Схематич. изображение величин и направлений векторов намагниченности катионов, образующих магнитные подрешётки d, а и с в ферритах-гранатах.

Ортоферритами наз. группу ферритов с орторомбической крист. структурой. Их образуют редкоземельные элементы по общей формуле RFeO3. Ортоферриты имеют структуру минерала перовскита. При не очень низких температурах в ортоферритах упорядочиваются только магн. моменты ионов железа. Ортоферриты явл. антиферромагнетиками и обладают слабым ферромагнетизмом. Только при очень низких температурах (порядка неск. К и ниже) в ортоферритах упорядочиваются магнитные моменты редкоземельных ионов, и они становятся ферримагнетиками.

Ферриты гексагональной структуры (гексаферриты) представляют собой сложные окисные соединения, напр. PbFe12O19, Ba2Zn2Fe12O22 и др. Ячейка гексаферритов построена ив шпинельных блоков, разделённых блоками гексагональной структуры, содержащей ионы Pb2+, Ва2+ или Sr2+ .

Некоторые гексаферриты обладают высокой коэрцитивной силой и применяются для изготовления пост. магнитов. Большинство ферритов со структурой шпинели, феррит-гранат иттрия и некоторые гексаферриты используются как магнитно-мягкие материалы. Синтез поликрист. феррита осуществляется по технологии изготовления керамики. Из смеси исходных окислов прессуют изделия нужной формы, которые подвергают затем спеканию при температурах от 900 до 1500°С на воздухе или в спец. газовых средах. Монокрист. феррит выращиваются методами Чохральского, Вернейля и др. Ферриты нашли широкое применение в радиотехнике — ферритовые антенны, сердечники радиочастотных контуров; в СВЧ-технике — вентили и циркуляторы, использующие принцип невзаимного распространения электромагнитные волны в волноводе, заполненном ферродиэлектриком; в вычислительной технике — элементы оперативной памяти; в магнитофонах и видеомагнитофонах — покрытие плёнок и дисков. феррит применяют также для изготовления небольших постоянных магнитов.


 

А также другие работы, которые могут Вас заинтересовать

38924. Измерение параметров оптического изображения 202.44 KB
  Таким образом в процессе вывода зарядов из ФЭП осуществляется второй этап преобразования: где емкость выходной структуры ТВД.9 можно записать в виде Здесь в явной форме представлено соотношение между амплитудой сигнала от объекта и освещенностью создаваемой объектом на входе ФЭП. Амплитуда видеосигнала ; ток сигнала на выходе ФЭП; нагрузочное сопротивление коэффициент усиления видеоусилителя. Для описания свойств ФЭП как преобразователя световой энергии в энергию электрического...
38925. Основные алгоритмы телевизионных измерений 167 KB
  Алгоритмы предназначены для измерения геометрических энергетических и цветовых параметров протяженного объекта находящегося в поле зрения ТВД. Употребляемый по отношению к алгоритмам термин внутрикадровые означает чтo измерение параметра объекта выполняется на основе информации сосредоточенной в одном телевизионном кадре. Результат однократного измерения характеризует состояние объекта в момент съемки текущего кадра. Пересчет цифрового параметра объекта в его значение выраженное в соответствующих единицах измерения производится по...
38926. Межкадровая фильтрация и измерение динамических параметров 56 KB
  Кроме того изменения параметров динамического объекта за время Тк невелики опять же не всегда а в подавляющем большинстве случаев. применение к последним межкадрового усредения приведёт скорее всего к нежелательным последствиям например размазыванию изображения движущегося объекта. Но обычно перед ТВсистемами стоит задача измерения динамических параметров в частности непрерывный контроль за текущим состоянием объекта которые не могут быть определены однократным измерением. Так например скорость объекта где положения...
38927. Представление и преобразование цифровых сигналов в телевизионных измерительных системах 31.5 KB
  Оцифровка представление объекта изображения или сигнала в дискретном наборе цифровых замеров. Для решения задач машинной графики обработки и распознавания изображений используются следующие этапы преобразования изображения: Предварительная обработка операции восстановления фильтрации улучшения визуального восприятия изображения. Формирование графического препарата обработка с целью вычленения характерных особенностей изображениясегментация выделение контуров скелетизация Анализ выявление характерных особенностей...
38928. Простой пороговый метод нелинейной фильтрации импульсных помех 51.5 KB
  Сигнал от каждого из элементов массива анализируемого изображения сравнивается со средним значением сигнала для небольшой группы mxn в окрестностях данного элемента Здесь m и n нечётные числа. Анизотропная фильтрация Анизотропная фильтрация относится к категории линейных процедур цифровой обработки массива [Eij ]. Он заключается выполнении операции свёртки исходного массива изображения формата M×N со скользящим сглаживающим массивом [W] меньшего формата m×n ядро свёртки. А поскольку в АТСН работающих в реальном масштабе времени...
38929. Цифровое представление изображения в виде матрицы отсчетов. Преимущество цифрового кодирования видеосигнала 66 KB
  Цифровое представление изображения в виде матрицы отсчетов. Это позволяет пронумеровать отсчеты цифрового видеосигнала в соответствии с позиционным положением элемента изображения в телевизионном растре и nti = ni j где i номер элемента в строке; j номер строки. Фактически номера i j являются цифровыми координатами элемента изображения которые в случае линейных разверток связаны с временными и геометрическими координатами соотношениями где j порядковый номер строки в которой находится элемент изображения; tx интервал...
38930. Линейные цифровые фильтры и их характеристики 47 KB
  Под термином цифровая фильтрация обычно понимают локальную цифровую обработку сигнала скользящим окном или аппертурой. Для каждого положения окна за исключением возможно небольшого числа крайних точек выборки выполняются однотипные действия которые определяют так называемый отклик или выход фильтра. Если действия определяющие отклик фильтра не изменяются в процессе перемещения по выборке сигнала то соответствующий фильтр называется стационарным. Различают линейную и нелинейную цифровую фильтрацию.
38931. Развитие видеозаписи на дисках. Видеопроигрыватели Laser Vision. Структурная схема и принцип работы 265 KB
  Диаметр 30 см; Длительность 30 мин. Диаметр 30 см; Длительность 5 мин; 156 об мин. Диаметр 21 см; Длительность 10 мин цвет; 1500 об мин; 280 канавок мм; четкость 250 линий. Диаметр 30 см; длительность 30 мин; четкость 250 линий.
38932. Цифровая запись видеосигнала. Достоинства по сравнению с аналоговой. Основные принципы цифровой видеозаписи 60 KB
  Цифровая запись видеосигнала пришла на смену аналоговым носителям как более гибкое и удобное средство формирования транспортировки и хранения видеоданных. аналоговый сигнал сглаживается менее подверженным искажениям менее зависимым от аппаратной реализации воспроизведения расширяются возможности обработки сигнала Требования к АЦП: Частота квантования не менее 135 МГц Число разрядов не менее 8 Число каналов: Для чернобелого 1 Для цветного 3 или 2 Дискретизация: Дискретизация дает некоторые искажения: Стоит...