19415

Наука и техника эпохи Возрождения

Доклад

Логика и философия

Наука и техника эпохи Возрождения. Эпоха Возрождения ─ особый период в европейской истории. С одной стороны это расцвет искусства возрождение античности гуманизм. Но с другой стороны рушились прежние ценности установки. Формировалась новая концепция человека ─ реш...

Русский

2013-07-12

35.5 KB

130 чел.

Наука и техника эпохи Возрождения.

Эпоха Возрождения ─ особый период в европейской истории. С одной стороны, это расцвет искусства, возрождение античности, гуманизм. Но, с другой стороны, рушились прежние ценности, установки. Формировалась новая концепция человека ─ решительной и предприимчивой личности.

Эпоха европейского Возрождения охватывает период XIV-XVI вв. «Возрождение» (от франц. «renaissance» — возрождение, Ренессанс) ─ возврат к ценностям античного мира. В этот период происходит возрождение огромного интереса к античной философии, к античным религиозным и оккультным учениям, к античной литературе и изобразительному искусству. Деятели эпохи Возрождения или (как они себя называли) гуманисты верили, что они формируют новую эпоху, с новым укладом жизни и возрожденными ценностями античного мира.

В эпоху Возрождения блестящее развитие получает литература и изобразительное искусство (живопись, скульптура).Искусство оказалось вплетено во все сферы человеческой жизни. Огромное влияние оказало искусство и на развитие науки. Наука в эпоху Возрождения становится активной, творческой. Творчество гуманисты воспринимали как одно из главных предназначений человека.

Так, Леон Батиста Альберти (1404-1472) ─ писатель, архитектор, теоретик искусства ─ утверждал, что в своей жизненной практике человек должен раскрыть заложенные в нем способности. В этом главная цель его существования. Причем, творчество понималось очень широко ─ от труда скромного ремесленника до высот научной и художественной деятельности.

Изобретатель, мастер, художник, архитектор, ученый ─ профессии, в эпоху Возрождения часто неразделимые! В наивысшей степени все эти грани человеческой деятельности соединились в творчестве Леонардо да Винчи. Мир его интересов не поддается одномерному определению. Его влекли не только архитектура, скульптура и живопись. Он не с меньшим увлечением изобретал невиданные машины, замысловатые конструкции, придумывал невероятное оружие и музыкальные инструменты, проектировал мосты, фортификационные сооружения, каналы. Он соединил науку, технику и искусство в практических целях. Одним из первых Леонардо применил в науке эксперимент, утверждая,  что опыт никогда не обманывает.

Крупнейшим научным открытием периода стала гелиоцентрическая модель мира, созданная Н.Коперником, к которой ученый пришел скорее под сильным влиянием чувства гармонии, чем в ходе научных изысканий. Для Н. Коперника, убежденного в простоте, разумности природы, система Птоломея выглядела совсем негармоничной, очень сложной, какой-то нагроможденной. Результатом его сомнений стало создание новой концепции мироустройства. Гелиоцентрическая картина мира с доказательствами была изложена  им в труде «О вращениях небесных сфер», который был опубликован незадолго до его смерти и в 1616 г был внесен католической церковью в «Список запрещенных книг». Запрет был снят только спустя более 200 лет.

Среди работ в области математики и механики можно выделить труд Николы Тартальи (1499-1552) «Проблемы и различные изобретения» (1546), в котором он утверждал, что траектория снаряда всегда криволинейна и не содержит прямолинейного участка.

Выдающимся математиком и механиком своего времени был голландец Симон Стевин (1548-1620). Им, в частности, были определены условия равновесия на наклонной плоскости и доказан закон Архимеда.

Научные исследования в области оптики проводил Франческо Мавролика (1494-1575). В своих научных трактатах он пытался уточнить представления об оптике глаза. Им были представлены объяснения причин близорукости и дальнозоркости на основании доказанного утверждения, что хрусталик работает как линза, строящая изображение на сетчатке.

Блестящие опыты по магнетизму проводил Джован Батист Порта (1543-1615) и описал их в своей книге «Магнетизм».

Одним из основателей науки «об электричестве и магнетизме» был ученый и врач по профессии Вильям Гильберт (1544-1603). Он провел много экспериментов по электричеству, но создать теорию электромагнитного поля ему не удалось.

Гуманизм Возрождения способствовал утверждению в Европе веротерпимости, уважения к личности, принципов открытости и свободы научного поиска. Это, несомненно, отразилось на развитии сферы гуманитарных наук.

В это время  были изобретены телескоп, микроскоп, ртутный барометр, усовершенствован часовой механизм. Иоганн Гуттенберг создал печатный станок, что по значимости сравнимо с изобретением в древности колеса  или письменности.

Первые конструкции телескопов были изобретены Галилеем, Кеплером, Ньютоном. Так, телескоп Галилея состоит из одной выпуклой и одной вогнутой линз, которые позволяют получить прямое изображение удаленного предмета.

Первые сложные микроскопы были изготовлены уже в конце XVI в. Славу же микроскопу принесли работы голландского ученого Антонии Ван Левенгука, открывшего и изучавшего с его помощью мир микроорганизмов. Некоторые его приборы позволили получить увеличение в 300 раз.

Изобретение  ртутного барометра связано с возникновением теории атмосферного давления, которую опытным путем подтвердил  французский естествоиспытатель Блез Паскаль. Появилась новая единица измерения - миллиметр ртутного столба и в 1644 г. Э. Торричелли был изобретен прибор, с помощью которого можно измерить атмосферное давление - ртутный барометр.

В развитии военной техники  можно отметить появление в первой половине XVI в. мушкетов (ружья с курком, снабжённым тлеющим фитилём), изобретение пистолета. При этом (как уже отмечалось выше), повышенный спрос на новые виды оружия привёл к быстрому развитию металлургии, а значит — к увеличению добычи железной, медной и оловянной руд. Интенсивнее стала развиваться металлургия и горнодобывающая промышленность. Создавались и усовершенствовались машины, применявшие в горнорудном деле. 

Таким образом, в XIVXVI  столетиях в науке и технике большинства стран Европы произошли важные изменения, подготовившие переход от Средневековья к Новому времени.


 

А также другие работы, которые могут Вас заинтересовать

42252. КОНТРОЛЬ МАЛОЙ КЛИНОВИДНОСТИ ПЛАСТИН НА ИНТЕРФЕРОМЕТРЕ ЧАПСКОГО 302 KB
  Рассмотрим возникновение полос равного наклона и определим величину разности хода лучей отраженных под некоторым углом от плоскопараллельной пластины рис. Если поверхности пластины образуют между собой малый угол  то изображения источника 1 в фокальной плоскости 6 разойдутся на расстояние l =n где  фокусное расстояние линзы 5. Первый случай соответствует перемещению пластины в сторону увеличения её толщины второй в сторону уменьшения. Появление или исчезновение кольца соответствует изменению толщины пластины на величину .
42253. Выполнение базовых преобразований на плоскости 98.5 KB
  Трансляция точки выполняется путем добавления смещения [m n] к ее координатам [x y], в результате чего получается точка с новыми координатами. Для объекта, описываемого множеством точек, все точки объекта перемещаются на одинаковые расстояния вдоль параллельных прямых. В матричной форме трансляция выполняется путем умножения однородных координат точки на матрицу трансляции
42254. Базовые алгоритмы 2D-геометрии 638.5 KB
  Геометрически каждая точка на плоскости задается значениями координат радиусвектора относительно выбранной системы координат. В этом случае объект поворачивается относительно оси вращения перпендикулярной плоскости xoy. Наиболее распространен сдвиг в направлении оси x и сдвиг в направлении оси y. Сдвиг выполняется путем умножения однородных координат точки на матрицу сдвига: сдвиг в направлении оси y сдвиг в направлении оси x.
42255. МИКРОПРОГРАММИРОВАНИЕ КОМАНД СМ ЭВМ 75 KB
  Знакомство с принципами микропрограммной эмуляции ЭВМ с программным управлением микропрограммирование машинных команд СМ ЭВМ. Вывод: В ходе работы я ознакомился с принципами микропрограммной эмуляции ЭВМ с программным управлением приобрел навыки микропрограммирования машинных команд СМ ЭВМ.
42256. EMBED PBrush 1007.5 KB
  rry1 db 123423 rry2 db 1500 dup rry3 db 2000 dup 56h В першому випадку кожний елемент масиву ініціалізується незалежно. Багатовимірний масив задається шляхом використання вкладених повторень dup наприклад r1 db 4 dup 3 dup 2 dup В мові Паскаль це еквівалентно наступному оператору r1:rry[0. Наприклад Instr32 struc Opcode dw Modrm db Sib db Disp dd Instr32 ends Сама структура задається в форматі директив визначення даних де в полі мнемокода задається ім'я структури наприклад In1 instr32 Або Min1 instr32 5...
42257. Микропрограммирование кмашинных манд СМ ЭВМ 72 KB
  Знакомство с принципами микропрограммной эмуляции ЭВМ с программным управлением, микропрограммирование машинных команд СМ ЭВМ.
42258. Создание экспертной системы с помощью программы VP-EXPERT 97 KB
  VP-EXPERT – интеллектуальная программа, способная делать логические выводы на основании знаний в конкретной предметной области и обеспечивающая решение специфических задач. VP-EXPERT и другие экспертные системы призваны заменить специалиста в конкретной предметной области, то есть решать задачи в отсутствии эксперта
42259. ИССЛЕДОВАНИЕ КОНТАКТОРОВ ПОСТОЯННОГО И ПЕРЕМЕННОГО ТОКА 79 KB
  В работе исследуются коммутационные процессы и динамические характеристики по результатам осциллографирования соответствующих процессов на контакторах постоянного МК1 и переменного РПУ1 тока. Исследование нагрузочной характеристики производится на препарированном образце контактора постоянного тока серии МК1. Устройство контакторов Контактор постоянного тока серии МК1 выполнен на номинальный ток 40 А и напряжение 220 В.
42260. ТЕХНОЛОГИЧЕСКИЙ КОНТРОЛЬ ВЗАИМНОГО РАСПОЛОЖЕНИЯ РАБОЧИХ ПОВЕРХНОСТЕЙ ПРИЗМ 344.5 KB
  Определив погрешности для нескольких положений призмы и решив систему уравнений связывающих погрешности с клиновидностью развертки находят абсолютное значение углов и величину пирамидальности призмы. Измерив расстояние между ними по горизонтали Г и вертикали В рассчитывают  45 и пирамидальность  призмы: Рис. Погрешность взаимного расположения поверхностей образующих угол 90 90 контролируют по схеме работы призмы как БР 180 рис. Точку пересечения ребер призмы находят по трем подвижным бликам.