19420

Измерение информации: содержательный и алфавитный подходы. Единицы измерения информации

Реферат

Информатика, кибернетика и программирование

Измерение информации: содержательный и алфавитный подходы. Единицы измерения информации. Вопрос: Как измерить информацию очень непростой. Ответ на него зависит от того что понимать под информацией. Но поскольку определять информацию можно поразному то и способы из

Русский

2013-07-12

26.65 KB

89 чел.

Измерение информации: содержательный и алфавитный подходы. Единицы измерения информации.

Вопрос: «Как измерить информацию?» очень непростой. Ответ на него зависит от того, что понимать под информацией. Но поскольку определять информацию можно по-разному, то и способы измерения тоже могут быть разными.

Содержательный подход к измерению информации.

Для человека информация — это знания человека. Рассмотрим вопрос с этой точки зрения.

Получение новой информации приводит к расширению знаний. Если некоторое сообщение приводит к уменьшению неопределенности нашего знания, то можно говорить, что такое сообщение содержит информацию.

Отсюда следует вывод, что сообщение информативно (т.е. содержит ненулевую информацию), если оно пополняет знания человека. Например, прогноз погоды на завтра — информативное сообщение, а сообщение о вчерашней погоде неинформативно, т.к. нам это уже известно.

Нетрудно понять, что информативность одного и того же сообщения может быть разной для разных людей. Например: «2x2=4» информативно для первоклассника, изучающего таблицу умножения, и неинформативно для старшеклассника.

Но для того чтобы сообщение было информативно оно должно еще быть понятно. Быть понятным, значит быть логически связанным с предыдущими знаниями человека. Определение «значение определенного интеграла равно разности значений первообразной подынтегральной функции на верхнем и на нижнем пределах», скорее всего, не пополнит знания и старшеклассника, т.к. оно ему не понятно. Для того, чтобы понять данное определение, нужно закончить изучение элементарной математики и знать начала высшей.

Получение всяких знаний должно идти от простого к сложному. И тогда каждое новое сообщение будет в то же время понятным, а значит, будет нести информацию для человека.

Сообщение несет информацию для человека, если содержащиеся в нем сведения являются для него новыми и понятными.

Очевидно, различать лишь две ситуации: «нет информации» — «есть информация» для измерения информации недостаточно. Нужна единица измерения, тогда мы сможем определять, в каком сообщении информации больше, в каком — меньше.

Единица измерения информации была определена в науке, которая называется теорией информации. Эта единица носит название «бит». Ее определение звучит так:

Сообщение, уменьшающее неопределенность знаний в два раза, несет 1 бит информации.

Например, после сдачи зачета или выполнения контрольной работы ученик мучается неопределенностью, он не знает, какую оценку получил. Наконец, учитель объявляет результаты, и он получаете одно из двух информационных сообщений: «зачет» или «незачет», а после контрольной работы одно из четырех информационных сообщений: «2», «3», «4» или «5».

Информационное сообщение об оценке за зачет приводит к уменьшению неопределенности знания в два раза, так как получено одно из двух возможных информационных сообщений. Информационное сообщение об оценке за контрольную работу приводит к уменьшению неопределенности знания в четыре раза, так как получено одно из четырех возможных информационных сообщений.

Неопределенность знаний о некотором событии — это количество возможных результатов события.

Рассмотрим еще один пример.

На книжном стеллаже восемь полок. Книга может быть поставлена на любую из них. Сколько информации содержит сообщение о том, где находится книга?

Применим метод половинного деления. Зададим несколько вопросов уменьшающих неопределенность знаний в два раза.

Задаем вопросы:

- Книга лежит выше четвертой полки?

- Нет.

- Книга лежит ниже третьей полки?

- Да .

- Книга — на второй полке?

- Нет.

- Ну теперь все ясно! Книга лежит на первой полке!

Каждый ответ уменьшал неопределенность в два раза.

Всего было задано три вопроса. Значит набрано 3 бита информации. И если бы сразу было сказано, что книга лежит на первой полке, то этим сообщением были бы переданы те же 3 бита информации.

Если обозначить возможное количество событий, или, другими словами, неопределенность знаний N, а буквой I количество информации в сообщении о том, что произошло одно из N событий, то можно записать формулу:

2I = N

Количество информации, содержащееся в сообщении о том, что произошло одно из N равновероятных событий, определяется из решения показательного уравнения: 2I = N.

Алфавитный подход к измерению информации.

А теперь познакомимся с другим способом измерения информации. Этот способ не связывает количество информации с содержанием сообщения, и называется он алфавитным подходом.

При алфавитном подходе к определению количества информации отвлекаются от содержания информации и рассматривают информационное сообщение как последовательность знаков определенной знаковой системы.

Проще всего разобраться в этом на примере текста, написанного на каком-нибудь языке. Для нас удобнее, чтобы это был русский язык.

Все множество используемых в языке символов будем традиционно называть алфавитом. Обычно под алфавитом понимают только буквы, но поскольку в тексте могут встречаться знаки препинания, цифры, скобки, то мы их тоже включим в алфавит. В алфавит также следует включить и пробел, т.е. пропуск между словами.

Полное количество символов алфавита принято называть мощностью алфавита. Будем обозначать эту величину буквой N. Например, мощность алфавита из русских букв и отмеченных дополнительных символов равна 54.

Представьте себе, что текст к вам поступает последовательно, по одному знаку, словно бумажная ленточка, выползающая из телеграфного аппарата. Предположим, что каждый появляющийся на ленте символ с одинаковой вероятностью может быть любым символом алфавита. В действительности это не совсем так, но для упрощения примем такое предположение.

В каждой очередной позиции текста может появиться любой из N символов. Тогда, согласно известной нам формуле, каждый такой символ несет I бит информации, которое можно определить из решения уравнения: 2I = 54. Получаем: I = 5.755 бит.

Вот сколько информации несет один символ в русском тексте! А теперь для того, чтобы найти количество информации во всем тексте, нужно посчитать число символов в нем и умножить на I.

Посчитаем количество информации на одной странице книги. Пусть страница содержит 50 строк. В каждой строке — 60 символов. Значит, на странице умещается 50x60=3000 знаков. Тогда объем информации будет равен: 5,755 х 3000 = 17265 бит.

При алфавитном подходе к измерению информации количество информации зависит не от содержания, а от размера текста и мощности алфавита.

При использовании двоичной системы (алфавит состоит из двух знаков: 0 и 1) каждый двоичный знак несет 1 бит информации. Интересно, что сама единица измерения информации «бит» получила свое название от английского сочетания «binary digit» - «двоичная цифра».

Применение алфавитного подхода удобно прежде всего при использовании технических средств работы с информацией. В этом случае теряют смысл понятия «новые — старые», «понятные — непонятные» сведения. Алфавитный подход является объективным способом измерения информации в отличие от субъективного содержательного подхода.

Удобнее всего измерять информацию, когда размер алфавита N равен целой степени двойки. Например, если N=16, то каждый символ несет 4 бита информации потому, что 24 = 16. А если N =32, то один символ «весит» 5 бит.

Ограничения на максимальный размер алфавита теоретически не существует. Однако есть алфавит, который можно назвать достаточным. С ним мы скоро встретимся при работе с компьютером. Это алфавит мощностью 256 символов. В алфавит такого размера можно поместить все практически необходимые символы: латинские и русские буквы, цифры, знаки арифметических операций, всевозможные скобки, знаки препинания....

Поскольку 256 = 28, то один символ этого алфавита «весит» 8 бит. Причем 8 бит информации — это настолько характерная величина, что ей даже присвоили свое название — байт.

1 байт = 8 бит.

Сегодня очень многие люди для подготовки писем, документов, статей, книг и пр. используют компьютерные текстовые редакторы. Компьютерные редакторы, в основном, работают с алфавитом размером 256 символов.

В этом случае легко подсчитать объем информации в тексте. Если 1 символ алфавита несет 1 байт информации, то надо просто сосчитать количество символов; полученное число даст информационный объем текста в байтах.

Пусть небольшая книжка, сделанная с помощью компьютера, содержит 150 страниц; на каждой странице — 40 строк, в каждой строке — 60 символов. Значит страница содержит 40x60=2400 байт информации. Объем всей информации в книге: 2400 х 150 = 360 000 байт.

В любой системе единиц измерения существуют основные единицы и производные от них.

Для измерения больших объемов информации используются следующие производные от байта единицы:

1 килобайт = 1Кб = 210 байт = 1024 байта.

1 мегабайт = 1Мб = 210 Кб = 1024 Кб.

1 гигабайт = 1Гб = 210 Мб = 1024 Мб.

Название

Условное обозначение

Соотношение с другими единицами

Килобит

Кбит

1 Кбит = 1024 бит = 210 бит ≈ 1000 бит

Мегабит

Мбит

1 Мбит = 1024 Кбит = 220 бит ≈ 1 000 000 бит

Гигабит

Гбит

1 Гбит = 1024 Мбит = 230 бит ≈ 1 000 000 000 бит

Килобайт

Кбайт (Кб)

1 Кбайт = 1024 байт = 210 байт ≈ 1000 байт

Мегабайт

Мбайт (Мб)

1 Мбайт = 1024 Кбайт = 220 байт ≈ 1 000 000 байт

Гигабайт

Гбайт (Гб)

1 Гбайт = 1024 Мбайт = 230 байт ≈ 1 000 000 000 байт

Прием-передача информации могут происходить с разной скоростью. Количество информации, передаваемое за единицу времени, есть скорость передачи информации или скорость информационного потока.

Очевидно, эта скорость выражается в таких единицах, как бит в секунду (бит/с), байт в секунду (байт/с), килобайт в секунду (Кбайт/с) и т.д.


 

А также другие работы, которые могут Вас заинтересовать

42314. Дисперсия света. Изучение дисперсии света 735.5 KB
  Наблюдение дисперсии света определение зависимости показателя преломления от длины волны светового излучения для конкретного вещества. Одним из наиболее давно известных человеку оптических эффектов является преломление света заключающееся в том что при переходе через границу двух сред луч света скачком меняет свое направление как бы претерпевает излом. Преломление света характеризуется относительным показателем преломления.
42315. ИССЛЕДОВАНИЕ РЕЗОНАНСНЫХ ЯВЛЕНИЙ В ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ 735.5 KB
  Падение напряжения на конденсаторе . Для тока в катушке имеем: сдвиг фаз между током в контуре и напряжением на конденсаторе составляет π 2 ток опережает по фазе напряжения на конденсаторе на π 2 рис. Для напряжения закон изменения имеет вид: При колебаниях происходит периодический переход электрической энергии конденсатора в магнитную энергию катушки . Для определения напряжения на конденсаторе разделим 1 на С имеем Чтобы найти закон изменения силы тока продифференцируем 1 по времени: Обозначим...
42316. ОСНОВЫ ЦИФРОВОЙ ТЕХНИКИ 2.89 MB
  Заготовки отчетов должны содержать цель работы далее по каждому пункту задания: функции реализуемые цифровым устройством представленные в аналитической или и табличной форме их преобразования поясняющие процесс проектирования; схему спроектированного узла или устройства; в случаях оговоренных в описании временные диаграммы поясняющие работу цифрового устройства; таблицы для записи результатов экспериментов; Исследуемые цифровые узлы и устройства собираются на одном и том же закрепленном за бригадой универсальном...
42317. ДОСЛIДЖЕННЯ РЕЖИМIВ РОБОТИ ГРАФОПОБУДУВАЧА 31.5 KB
  Ознайомитися з принципом дї та системою команд графопобудувача HPGLдод. Дослiдити роботу графопобудувача в режимі емуляції. Принципи дiї та основнi команди графопобудувача.
42318. Использование шаблонов при создании презентаций 191 KB
  На панели задач щелкните на кнопке Пуск Strt. В стартовом диалоговом окне щелкните на кнопке выбора Шаблон презентации Templte и затем на кнопке ОК. Примечание: Если вы продолжаете сеанс работы после предыдущего урока щелкните на меню Файл File и затем на команде Создать New. Щелкните на вкладке Дизайны презентаций Presenttion Designs.
42319. Информационные системы и системы управления базами данных 2.77 MB
  Информационные системы и системы управления базами данных Введение Информационные системы взаимодействия видов транспорта ИСВВТ отличаются от других информационных систем ИС в основном решаемыми задачами. Поэтому в основе любой из них лежит среда хранения обработки и доступа к данным база данных;  информационные системы ориентируются на конечного пользователя не обладающего высокой квалификацией в области применения вычислительной техники. Системы управленя базами данных Любая ИС оперирует информацией о той...
42320. Базы данных реляционных и объектно-реляционных СУБД 1.19 MB
  Рассмотрим смысл этих понятий на примере отношения таблицы СТУДЕНТЫсодержащего информацию о студентах некоторого вуза табл. Тип данных определяет диапазон значений которые можно сохранить в переменной или столбце таблицы отношения а также набор операций разрешенных для данных этого типа. Например предположим что в БД кроме таблицы СТУДЕНТЫ Табл. Допустим что столбец Имя таблицы СТУДЕНТЫ и столбец ФИО таблицы ПРЕПОДАВАТЕЛИ имеют одинаковые типы данных максимальную длину в обоих столбцах используется кириллица и смысл...
42321. Архитектура баз данных и способы доступа к ним в пакете Delphi 361.5 KB
  Архитектура баз данных Современная система управления базами данных такая как InterBse SQL Server пакета Delphi или Microsoft SQL Server 2000 может поддерживать хранение и обработку множества баз данных к которым одновременно могут обращаться множество пользователей. Прежде чем учиться управлению этими базами данных познакомимся с их структурой то есть с представлением базы данных на логическом и физическом уровнях. При этом будет рассмотрен список объектов поддерживаемых базами данных InterBse SQL Server 6 сокращённо...
42322. Операции с базой данных 238.5 KB
  Операции с базой данных Цель работы Изучить операции с базами данных в целом. Получить навыки использования приложения IBExpert для создания удаления регистрации подключения извлечения метаданных резервного копирования и восстановления базы данных СУБД Firebird. Изучить SQLоператоры для создания подключения и удаления базы данных. Исходные данные Студент получает индивидуальный вариант исходных данных который используется при выполнении всех лабораторных работ.