19423

Процесс передачи информации, источник и приемник информации, канал передачи информации. Скорость передачи информации

Реферат

Информатика, кибернетика и программирование

Процесс передачи информации источник и приемник информации канал передачи информации. Скорость передачи информации. Развитие человечества не было бы возможно без обмена информацией. С давних времен люди из поколения в поколение передавали свои знания извещали об опа...

Русский

2013-07-12

437 KB

8 чел.

Процесс передачи информации, источник и приемник информации, канал передачи информации. Скорость передачи информации.

Развитие человечества не было бы возможно без обмена информацией. С давних времен люди из поколения в поколение передавали свои знания, извещали об опасности или передавали важную и срочную информацию, обменивались сведениями. Например, в Петербурге в начале XIX века была весьма развита пожарная служба. В нескольких частях города были построены высокие каланчи, с которых обозревались окрестности. Если случался пожар, то на башне днем поднимался разноцветный флаг (с той или иной геометрической фигурой), а ночью зажигалось несколько фонарей, число и расположение которых означало часть города, где произошел пожар, а также степень его сложности.

 

Пожарная каланча в Костроме

 Оптический телеграф Шаппа в Литермонте (Германия)



В любом процессе передачи или обмене информацией существует ее
источник и получатель, а сама информация передается по каналу связи с помощью сигналов: механических, тепловых, электрических и др. В обычной жизни для человека любой звук, свет являются сигналами, несущими смысловую нагрузку. Например, сирена — это звуковой сигнал тревоги; звонок телефона — сигнал, чтобы взять трубку; красный свет светофора — сигнал, запрещающий переход дороги.


В качестве источника информации может выступать живое существо или техническое устройство. От него информация попадает на кодирующее устройство, которое предназначено для преобразования исходного сообщения в форму, удобную для передачи. С такими устройствами вы встречаетесь постоянно: микрофон телефона, лист бумаги и т. д. По каналу связи информация попадает в декодирующее устройство получателя, которое преобразует кодированное сообщение в форму, понятную получателю. Одни из самых сложных декодирующих устройств — человеческие ухо и глаз.


В процессе передачи информация может утрачиваться, искажаться. Это происходит из-за различных помех, как на канале связи, так и при кодировании и декодировании информации. С такими ситуациями вы встречаетесь достаточно часто: искажение звука в телефоне, помехи при телевизионной передаче, ошибки телеграфа, неполнота переданной информации, неверно выраженная мысль, ошибка в расчетах. Вопросами, связанными с методами кодирования и декодирования информации, занимается специальная наука — криптография.

При передаче информации важную роль играет форма представления информации. Она может быть понятна источнику информации, но недоступна для понимания получателя. Люди специально договариваются о языке, с помощью которого будет представлена информация для более надежного ее сохранения.

Прием-передача информации могут происходить с разной скоростью. Количество информации, передаваемое за единицу времени, есть скорость передачи информации или скорость информационного потока.

Очевидно, эта скорость выражается в таких единицах, как бит в секунду (бит/с), байт в секунду (байт/с), килобайт в секунду (Кбайт/с) и т.д.

К сожалению, в отношении трактовки приставок существует неоднозначность. Встречается два подхода:

  •  при одном, килобит трактуется как 1000 бит (как килограмм или километр), мегабит как 1000 килобит и т. д. Основной довод сторонников такого подхода — отсутствие сложности в вычислениях.
  •  при другом подходе, килобит трактуется как 1024 бита (как килобайт), мегабит как 1024 килобита и так далее. Основной довод — соответствие с традиционными для вычислительной техники килобайтами (1024 байта), мегабайтами и т. п.

Применяются оба подхода, хотя для бита правильным считается «стандартный» подход, в отличии от байта, с которым «компьютерный» подход признают основным за традиционность. К битам, «компьютерный» подход применяют, преимущественно в компьютерной технике и программах.

Максимальная скорость передачи информации по каналу связи называется пропускной способностью канала.

Следует упомянуть еще одну единицу измерения скорости передачи информации – бод. Бод (англ. baud) в связи и электронике — единица скорости передачи сигнала, количество изменений информационного параметра несущего периодического сигнала в секунду. Названа по имени Эмиля Бодо, изобретателя кода Бодо — кодировки символов для телетайпов.

Зачастую, ошибочно считают что бод это количество бит переданное в секунду. В действительности же, это верно лишь для двоичного кодирования, которое используется не всегда. Например, в современных модемах используется квадратурная амплитудная манипуляция (КАМ), и одним изменением уровня сигнала может кодироваться несколько (до 16) бит информации. Например, при скорости изменения сигнала 2400 бод, скорость передачи может составлять 9600 бит/c, благодаря тому, что в каждом временном интервале передаётся 4 бита.

Кроме этого, бодами выражают полную емкость канала, включая служебные символы (биты), если они есть. Эффективная же скорость канала выражается другими единицами, например битами в секунду.

Одним из самых совершенных средств связи являются оптические световоды. Информация по таким каналам передается в виде световых импульсов, посылаемых лазерным излучателем. Оптические каналы отличаются от других высокой помехоустойчивостью и пропускной способностью, которая может составлять десятки и сотни мегабайт в секунду. Например, при скорости 50 Мбайт/с в течении 1 секунды передается объем информации, приблизительно равный содержанию 10 школьных учебников.


 

А также другие работы, которые могут Вас заинтересовать

13327. Визначення коефіцієнта поверхневого натягу методом Ребіндера 223 KB
  Лабораторна робота №7 Визначення коефіцієнта поверхневого натягу методом Ребіндера. Мета роботи: аВизначення властивостей рідини: бВивчення методів та експериментальне визначення коефіцієнта поверхневого натягу. Прилади та матеріали: аспіратор установка
13328. Комп’ютерний вибір оптимальних однорідних термоелектричних матеріалів для термоелектрики 29.5 KB
  Звіт до лабораторної роботи № 1 Комп’ютерний вибір оптимальних однорідних термоелектричних матеріалів для термоелектрики Мета роботи Використовуючи експериментальні дані кінетичних коефіцієнтів навчитись проводити раціональний вибір термоелектричного мат
13329. Моделювання матеріалу n – типу провідності на основі Bi - Sb в оптимальному магнітному полі для низькотемпературного охолодження 27 KB
  Звіт до лабораторної роботи № 2 Моделювання матеріалу n – типу провідності на основі Bi Sb в оптимальному магнітному полі для низькотемпературного охолодження Мета роботи Використовуючи експериментальні залежності коефіцієнтів Зеебека α електропровідності σ ...
13330. Проектування термоелектричного матеріалу для віток термоелемента на основі мікроскопічної теорії явищ перенесення 38 KB
  Звіт до лабораторної роботи № 3 Проектування термоелектричного матеріалу для віток термоелемента на основі мікроскопічної теорії явищ перенесення Мета роботи На основі макроскопічної теорії явищ перенесення навчитись моделювати напівпровідниковий матеріа
13331. Оптимізація однорідних термоелектричних матеріалів на основі мікроскопічної теорії явищ переносу 79 KB
  Звіт до лабораторної роботи № 4 Оптимізація однорідних термоелектричних матеріалів на основі мікроскопічної теорії явищ переносу Мета роботи Набути навички визначення оптимальних властивостей матеріалу віток при яких досягається максимальне значення параме
13332. Теоретичне дослідження параметрів термоелектричних речовин при наявності виродження електронного газу 88 KB
  Звіт до лабораторної роботи № 5 Теоретичне дослідження параметрів термоелектричних речовин при наявності виродження електронного газу Мета роботи Розрахувати основні параметри термоелектричних матеріалів при наявності виродження електронною газу. Методика...
13333. Комп’ютерне моделювання дискретно - неоднорідного термоелектричного матеріалу для секційних термоелементів 26.5 KB
  Звіт до лабораторної роботи № 6 Комп’ютерне моделювання дискретно неоднорідного термоелектричного матеріалу для секційних термоелементів Мета роботи Використовуючи експериментальні температурні залежності коефіцієнтів Зеебека α електропровідності σ те
13334. Проектування ФГМ для термопарних генераторних елементів 27.5 KB
  Звіт до лабораторної роботи № 7 Проектування ФГМ для термопарних генераторних елементів Мета роботи Навчитись проводити комп'ютерне проектування оптимально неоднорідних матеріалів для генераторних термопарних елементів в режимі максимальної енергетичної еф
13335. Використання директив резервування та ініціалізації пам’яті 35.25 KB
  Лабораторна робота №1. Тема:Використання директив резервування та ініціалізації пам’яті. Мета:Набути навиків опису простих типів даних;вивчити принцип розміщення даних програми в пам’яті комп’ютера. Короткі теоретичні відомості: Порядок створення програми на...